uuid/lib.rs
1// Copyright 2013-2014 The Rust Project Developers.
2// Copyright 2018 The Uuid Project Developers.
3//
4// See the COPYRIGHT file at the top-level directory of this distribution.
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12//! Generate and parse universally unique identifiers (UUIDs).
13//!
14//! Here's an example of a UUID:
15//!
16//! ```text
17//! 67e55044-10b1-426f-9247-bb680e5fe0c8
18//! ```
19//!
20//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
21//! formatted as a hex string in five groups. UUIDs are used to assign unique
22//! identifiers to entities without requiring a central allocating authority.
23//!
24//! They are particularly useful in distributed systems, though can be used in
25//! disparate areas, such as databases and network protocols. Typically a UUID
26//! is displayed in a readable string form as a sequence of hexadecimal digits,
27//! separated into groups by hyphens.
28//!
29//! The uniqueness property is not strictly guaranteed, however for all
30//! practical purposes, it can be assumed that an unintentional collision would
31//! be extremely unlikely.
32//!
33//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
34//!
35//! # Getting started
36//!
37//! Add the following to your `Cargo.toml`:
38//!
39//! ```toml
40//! [dependencies.uuid]
41//! version = "1.13.2"
42//! features = [
43//! "v4", # Lets you generate random UUIDs
44//! "fast-rng", # Use a faster (but still sufficiently random) RNG
45//! "macro-diagnostics", # Enable better diagnostics for compile-time UUIDs
46//! ]
47//! ```
48//!
49//! When you want a UUID, you can generate one:
50//!
51//! ```
52//! # fn main() {
53//! # #[cfg(feature = "v4")]
54//! # {
55//! use uuid::Uuid;
56//!
57//! let id = Uuid::new_v4();
58//! # }
59//! # }
60//! ```
61//!
62//! If you have a UUID value, you can use its string literal form inline:
63//!
64//! ```
65//! use uuid::{uuid, Uuid};
66//!
67//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
68//! ```
69//!
70//! # Working with different UUID versions
71//!
72//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
73//!
74//! By default, this crate depends on nothing but the Rust standard library and can parse and format
75//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
76//! are Cargo features that enable generating them:
77//!
78//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
79//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
80//! * `v4` - Version 4 UUIDs with random data.
81//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
82//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
83//! * `v7` - Version 7 UUIDs using a Unix timestamp.
84//! * `v8` - Version 8 UUIDs using user-defined data.
85//!
86//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
87//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
88//! that can be used when you need control over implicit requirements on things like a source
89//! of randomness.
90//!
91//! ## Which UUID version should I use?
92//!
93//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
94//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
95//! Other versions should generally be avoided unless there's an existing need for them.
96//!
97//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
98//!
99//! # Other features
100//!
101//! Other crate features can also be useful beyond the version support:
102//!
103//! * `macro-diagnostics` - enhances the diagnostics of `uuid!` macro.
104//! * `serde` - adds the ability to serialize and deserialize a UUID using
105//! `serde`.
106//! * `borsh` - adds the ability to serialize and deserialize a UUID using
107//! `borsh`.
108//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
109//! fuzzing.
110//! * `fast-rng` - uses a faster algorithm for generating random UUIDs when available.
111//! This feature requires more dependencies to compile, but is just as suitable for
112//! UUIDs as the default algorithm.
113//! * `rng-rand` - forces `rand` as the backend for randomness.
114//! * `rng-getrandom` - forces `getrandom` as the backend for randomness.
115//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
116//!
117//! # Unstable features
118//!
119//! Some features are unstable. They may be incomplete or depend on other
120//! unstable libraries. These include:
121//!
122//! * `zerocopy` - adds support for zero-copy deserialization using the
123//! `zerocopy` library.
124//!
125//! Unstable features may break between minor releases.
126//!
127//! To allow unstable features, you'll need to enable the Cargo feature as
128//! normal, but also pass an additional flag through your environment to opt-in
129//! to unstable `uuid` features:
130//!
131//! ```text
132//! RUSTFLAGS="--cfg uuid_unstable"
133//! ```
134//!
135//! # Building for other targets
136//!
137//! ## WebAssembly
138//!
139//! For WebAssembly, enable the `js` feature:
140//!
141//! ```toml
142//! [dependencies.uuid]
143//! version = "1.13.2"
144//! features = [
145//! "v4",
146//! "v7",
147//! "js",
148//! ]
149//! ```
150//!
151//! ## Embedded
152//!
153//! For embedded targets without the standard library, you'll need to
154//! disable default features when building `uuid`:
155//!
156//! ```toml
157//! [dependencies.uuid]
158//! version = "1.13.2"
159//! default-features = false
160//! ```
161//!
162//! Some additional features are supported in no-std environments:
163//!
164//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
165//! * `serde`.
166//!
167//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
168//! produce random bytes yourself and then pass them to [`Builder::from_random_bytes`]
169//! without enabling the `v4` or `v7` features.
170//!
171//! If you're using `getrandom`, you can specify the `rng-getrandom` or `rng-rand`
172//! features of `uuid` and configure `getrandom`'s provider per its docs. `uuid`
173//! may upgrade its version of `getrandom` in minor releases.
174//!
175//! # Examples
176//!
177//! Parse a UUID given in the simple format and print it as a URN:
178//!
179//! ```
180//! # use uuid::Uuid;
181//! # fn main() -> Result<(), uuid::Error> {
182//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
183//!
184//! println!("{}", my_uuid.urn());
185//! # Ok(())
186//! # }
187//! ```
188//!
189//! Generate a random UUID and print it out in hexadecimal form:
190//!
191//! ```
192//! // Note that this requires the `v4` feature to be enabled.
193//! # use uuid::Uuid;
194//! # fn main() {
195//! # #[cfg(feature = "v4")] {
196//! let my_uuid = Uuid::new_v4();
197//!
198//! println!("{}", my_uuid);
199//! # }
200//! # }
201//! ```
202//!
203//! # References
204//!
205//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
206//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
207//!
208//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
209
210#![no_std]
211#![deny(missing_debug_implementations, missing_docs)]
212#![allow(clippy::mixed_attributes_style)]
213#![doc(
214 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
215 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
216 html_root_url = "https://docs.rs/uuid/1.13.2"
217)]
218
219#[cfg(any(feature = "std", test))]
220#[macro_use]
221extern crate std;
222
223#[cfg(all(not(feature = "std"), not(test)))]
224#[macro_use]
225extern crate core as std;
226
227mod builder;
228mod error;
229mod non_nil;
230mod parser;
231
232pub mod fmt;
233pub mod timestamp;
234
235pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
236
237#[cfg(any(feature = "v1", feature = "v6"))]
238pub use timestamp::context::Context;
239
240#[cfg(feature = "v7")]
241pub use timestamp::context::ContextV7;
242
243#[cfg(feature = "v1")]
244#[doc(hidden)]
245// Soft-deprecated (Rust doesn't support deprecating re-exports)
246// Use `Context` from the crate root instead
247pub mod v1;
248#[cfg(feature = "v3")]
249mod v3;
250#[cfg(feature = "v4")]
251mod v4;
252#[cfg(feature = "v5")]
253mod v5;
254#[cfg(feature = "v6")]
255mod v6;
256#[cfg(feature = "v7")]
257mod v7;
258#[cfg(feature = "v8")]
259mod v8;
260
261#[cfg(feature = "md5")]
262mod md5;
263#[cfg(feature = "rng")]
264mod rng;
265#[cfg(feature = "sha1")]
266mod sha1;
267
268mod external;
269
270#[macro_use]
271mod macros;
272
273#[doc(hidden)]
274#[cfg(feature = "macro-diagnostics")]
275pub extern crate uuid_macro_internal;
276
277#[doc(hidden)]
278pub mod __macro_support {
279 pub use crate::std::result::Result::{Err, Ok};
280}
281
282use crate::std::convert;
283
284pub use crate::{builder::Builder, error::Error, non_nil::NonNilUuid};
285
286/// A 128-bit (16 byte) buffer containing the UUID.
287///
288/// # ABI
289///
290/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
291pub type Bytes = [u8; 16];
292
293/// The version of the UUID, denoting the generating algorithm.
294///
295/// # References
296///
297/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
298#[derive(Clone, Copy, Debug, PartialEq)]
299#[non_exhaustive]
300#[repr(u8)]
301pub enum Version {
302 /// The "nil" (all zeros) UUID.
303 Nil = 0u8,
304 /// Version 1: Timestamp and node ID.
305 Mac = 1,
306 /// Version 2: DCE Security.
307 Dce = 2,
308 /// Version 3: MD5 hash.
309 Md5 = 3,
310 /// Version 4: Random.
311 Random = 4,
312 /// Version 5: SHA-1 hash.
313 Sha1 = 5,
314 /// Version 6: Sortable Timestamp and node ID.
315 SortMac = 6,
316 /// Version 7: Timestamp and random.
317 SortRand = 7,
318 /// Version 8: Custom.
319 Custom = 8,
320 /// The "max" (all ones) UUID.
321 Max = 0xff,
322}
323
324/// The reserved variants of UUIDs.
325///
326/// # References
327///
328/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
329#[derive(Clone, Copy, Debug, PartialEq)]
330#[non_exhaustive]
331#[repr(u8)]
332pub enum Variant {
333 /// Reserved by the NCS for backward compatibility.
334 NCS = 0u8,
335 /// As described in the RFC 9562 Specification (default).
336 /// (for backward compatibility it is not yet renamed)
337 RFC4122,
338 /// Reserved by Microsoft for backward compatibility.
339 Microsoft,
340 /// Reserved for future expansion.
341 Future,
342}
343
344/// A Universally Unique Identifier (UUID).
345///
346/// # Examples
347///
348/// Parse a UUID given in the simple format and print it as a urn:
349///
350/// ```
351/// # use uuid::Uuid;
352/// # fn main() -> Result<(), uuid::Error> {
353/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
354///
355/// println!("{}", my_uuid.urn());
356/// # Ok(())
357/// # }
358/// ```
359///
360/// Create a new random (V4) UUID and print it out in hexadecimal form:
361///
362/// ```
363/// // Note that this requires the `v4` feature enabled in the uuid crate.
364/// # use uuid::Uuid;
365/// # fn main() {
366/// # #[cfg(feature = "v4")] {
367/// let my_uuid = Uuid::new_v4();
368///
369/// println!("{}", my_uuid);
370/// # }
371/// # }
372/// ```
373///
374/// # Formatting
375///
376/// A UUID can be formatted in one of a few ways:
377///
378/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
379/// * [`hyphenated`](#method.hyphenated):
380/// `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
381/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
382/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
383///
384/// The default representation when formatting a UUID with `Display` is
385/// hyphenated:
386///
387/// ```
388/// # use uuid::Uuid;
389/// # fn main() -> Result<(), uuid::Error> {
390/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
391///
392/// assert_eq!(
393/// "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
394/// my_uuid.to_string(),
395/// );
396/// # Ok(())
397/// # }
398/// ```
399///
400/// Other formats can be specified using adapter methods on the UUID:
401///
402/// ```
403/// # use uuid::Uuid;
404/// # fn main() -> Result<(), uuid::Error> {
405/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
406///
407/// assert_eq!(
408/// "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
409/// my_uuid.urn().to_string(),
410/// );
411/// # Ok(())
412/// # }
413/// ```
414///
415/// # Endianness
416///
417/// The specification for UUIDs encodes the integer fields that make up the
418/// value in big-endian order. This crate assumes integer inputs are already in
419/// the correct order by default, regardless of the endianness of the
420/// environment. Most methods that accept integers have a `_le` variant (such as
421/// `from_fields_le`) that assumes any integer values will need to have their
422/// bytes flipped, regardless of the endianness of the environment.
423///
424/// Most users won't need to worry about endianness unless they need to operate
425/// on individual fields (such as when converting between Microsoft GUIDs). The
426/// important things to remember are:
427///
428/// - The endianness is in terms of the fields of the UUID, not the environment.
429/// - The endianness is assumed to be big-endian when there's no `_le` suffix
430/// somewhere.
431/// - Byte-flipping in `_le` methods applies to each integer.
432/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
433/// you'll get the same values back out with `to_fields_le`.
434///
435/// # ABI
436///
437/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
438#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
439#[repr(transparent)]
440// NOTE: Also check `NonNilUuid` when ading new derives here
441#[cfg_attr(
442 all(uuid_unstable, feature = "zerocopy"),
443 derive(
444 zerocopy::IntoBytes,
445 zerocopy::FromBytes,
446 zerocopy::KnownLayout,
447 zerocopy::Immutable,
448 zerocopy::Unaligned
449 )
450)]
451#[cfg_attr(
452 feature = "borsh",
453 derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
454)]
455#[cfg_attr(
456 feature = "bytemuck",
457 derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
458)]
459pub struct Uuid(Bytes);
460
461impl Uuid {
462 /// UUID namespace for Domain Name System (DNS).
463 pub const NAMESPACE_DNS: Self = Uuid([
464 0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
465 0xc8,
466 ]);
467
468 /// UUID namespace for ISO Object Identifiers (OIDs).
469 pub const NAMESPACE_OID: Self = Uuid([
470 0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
471 0xc8,
472 ]);
473
474 /// UUID namespace for Uniform Resource Locators (URLs).
475 pub const NAMESPACE_URL: Self = Uuid([
476 0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
477 0xc8,
478 ]);
479
480 /// UUID namespace for X.500 Distinguished Names (DNs).
481 pub const NAMESPACE_X500: Self = Uuid([
482 0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
483 0xc8,
484 ]);
485
486 /// Returns the variant of the UUID structure.
487 ///
488 /// This determines the interpretation of the structure of the UUID.
489 /// This method simply reads the value of the variant byte. It doesn't
490 /// validate the rest of the UUID as conforming to that variant.
491 ///
492 /// # Examples
493 ///
494 /// Basic usage:
495 ///
496 /// ```
497 /// # use uuid::{Uuid, Variant};
498 /// # fn main() -> Result<(), uuid::Error> {
499 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
500 ///
501 /// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
502 /// # Ok(())
503 /// # }
504 /// ```
505 ///
506 /// # References
507 ///
508 /// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
509 pub const fn get_variant(&self) -> Variant {
510 match self.as_bytes()[8] {
511 x if x & 0x80 == 0x00 => Variant::NCS,
512 x if x & 0xc0 == 0x80 => Variant::RFC4122,
513 x if x & 0xe0 == 0xc0 => Variant::Microsoft,
514 x if x & 0xe0 == 0xe0 => Variant::Future,
515 // The above match arms are actually exhaustive
516 // We just return `Future` here because we can't
517 // use `unreachable!()` in a `const fn`
518 _ => Variant::Future,
519 }
520 }
521
522 /// Returns the version number of the UUID.
523 ///
524 /// This represents the algorithm used to generate the value.
525 /// This method is the future-proof alternative to [`Uuid::get_version`].
526 ///
527 /// # Examples
528 ///
529 /// Basic usage:
530 ///
531 /// ```
532 /// # use uuid::Uuid;
533 /// # fn main() -> Result<(), uuid::Error> {
534 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
535 ///
536 /// assert_eq!(3, my_uuid.get_version_num());
537 /// # Ok(())
538 /// # }
539 /// ```
540 ///
541 /// # References
542 ///
543 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
544 pub const fn get_version_num(&self) -> usize {
545 (self.as_bytes()[6] >> 4) as usize
546 }
547
548 /// Returns the version of the UUID.
549 ///
550 /// This represents the algorithm used to generate the value.
551 /// If the version field doesn't contain a recognized version then `None`
552 /// is returned. If you're trying to read the version for a future extension
553 /// you can also use [`Uuid::get_version_num`] to unconditionally return a
554 /// number. Future extensions may start to return `Some` once they're
555 /// standardized and supported.
556 ///
557 /// # Examples
558 ///
559 /// Basic usage:
560 ///
561 /// ```
562 /// # use uuid::{Uuid, Version};
563 /// # fn main() -> Result<(), uuid::Error> {
564 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
565 ///
566 /// assert_eq!(Some(Version::Md5), my_uuid.get_version());
567 /// # Ok(())
568 /// # }
569 /// ```
570 ///
571 /// # References
572 ///
573 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
574 pub const fn get_version(&self) -> Option<Version> {
575 match self.get_version_num() {
576 0 if self.is_nil() => Some(Version::Nil),
577 1 => Some(Version::Mac),
578 2 => Some(Version::Dce),
579 3 => Some(Version::Md5),
580 4 => Some(Version::Random),
581 5 => Some(Version::Sha1),
582 6 => Some(Version::SortMac),
583 7 => Some(Version::SortRand),
584 8 => Some(Version::Custom),
585 0xf => Some(Version::Max),
586 _ => None,
587 }
588 }
589
590 /// Returns the four field values of the UUID.
591 ///
592 /// These values can be passed to the [`Uuid::from_fields`] method to get
593 /// the original `Uuid` back.
594 ///
595 /// * The first field value represents the first group of (eight) hex
596 /// digits, taken as a big-endian `u32` value. For V1 UUIDs, this field
597 /// represents the low 32 bits of the timestamp.
598 /// * The second field value represents the second group of (four) hex
599 /// digits, taken as a big-endian `u16` value. For V1 UUIDs, this field
600 /// represents the middle 16 bits of the timestamp.
601 /// * The third field value represents the third group of (four) hex digits,
602 /// taken as a big-endian `u16` value. The 4 most significant bits give
603 /// the UUID version, and for V1 UUIDs, the last 12 bits represent the
604 /// high 12 bits of the timestamp.
605 /// * The last field value represents the last two groups of four and twelve
606 /// hex digits, taken in order. The first 1-3 bits of this indicate the
607 /// UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
608 /// sequence and the last 48 bits indicate the node ID.
609 ///
610 /// # Examples
611 ///
612 /// ```
613 /// # use uuid::Uuid;
614 /// # fn main() -> Result<(), uuid::Error> {
615 /// let uuid = Uuid::nil();
616 ///
617 /// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
618 ///
619 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
620 ///
621 /// assert_eq!(
622 /// uuid.as_fields(),
623 /// (
624 /// 0xa1a2a3a4,
625 /// 0xb1b2,
626 /// 0xc1c2,
627 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
628 /// )
629 /// );
630 /// # Ok(())
631 /// # }
632 /// ```
633 pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
634 let bytes = self.as_bytes();
635
636 let d1 = (bytes[0] as u32) << 24
637 | (bytes[1] as u32) << 16
638 | (bytes[2] as u32) << 8
639 | (bytes[3] as u32);
640
641 let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
642
643 let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
644
645 let d4: &[u8; 8] = convert::TryInto::try_into(&bytes[8..16]).unwrap();
646 (d1, d2, d3, d4)
647 }
648
649 /// Returns the four field values of the UUID in little-endian order.
650 ///
651 /// The bytes in the returned integer fields will be converted from
652 /// big-endian order. This is based on the endianness of the UUID,
653 /// rather than the target environment so bytes will be flipped on both
654 /// big and little endian machines.
655 ///
656 /// # Examples
657 ///
658 /// ```
659 /// use uuid::Uuid;
660 ///
661 /// # fn main() -> Result<(), uuid::Error> {
662 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
663 ///
664 /// assert_eq!(
665 /// uuid.to_fields_le(),
666 /// (
667 /// 0xa4a3a2a1,
668 /// 0xb2b1,
669 /// 0xc2c1,
670 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
671 /// )
672 /// );
673 /// # Ok(())
674 /// # }
675 /// ```
676 pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
677 let d1 = (self.as_bytes()[0] as u32)
678 | (self.as_bytes()[1] as u32) << 8
679 | (self.as_bytes()[2] as u32) << 16
680 | (self.as_bytes()[3] as u32) << 24;
681
682 let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
683
684 let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
685
686 let d4: &[u8; 8] = convert::TryInto::try_into(&self.as_bytes()[8..16]).unwrap();
687 (d1, d2, d3, d4)
688 }
689
690 /// Returns a 128bit value containing the value.
691 ///
692 /// The bytes in the UUID will be packed directly into a `u128`.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// # use uuid::Uuid;
698 /// # fn main() -> Result<(), uuid::Error> {
699 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
700 ///
701 /// assert_eq!(
702 /// uuid.as_u128(),
703 /// 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
704 /// );
705 /// # Ok(())
706 /// # }
707 /// ```
708 pub const fn as_u128(&self) -> u128 {
709 u128::from_be_bytes(*self.as_bytes())
710 }
711
712 /// Returns a 128bit little-endian value containing the value.
713 ///
714 /// The bytes in the `u128` will be flipped to convert into big-endian
715 /// order. This is based on the endianness of the UUID, rather than the
716 /// target environment so bytes will be flipped on both big and little
717 /// endian machines.
718 ///
719 /// Note that this will produce a different result than
720 /// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
721 /// than reversing the individual fields in-place.
722 ///
723 /// # Examples
724 ///
725 /// ```
726 /// # use uuid::Uuid;
727 /// # fn main() -> Result<(), uuid::Error> {
728 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
729 ///
730 /// assert_eq!(
731 /// uuid.to_u128_le(),
732 /// 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
733 /// );
734 /// # Ok(())
735 /// # }
736 /// ```
737 pub const fn to_u128_le(&self) -> u128 {
738 u128::from_le_bytes(*self.as_bytes())
739 }
740
741 /// Returns two 64bit values containing the value.
742 ///
743 /// The bytes in the UUID will be split into two `u64`.
744 /// The first u64 represents the 64 most significant bits,
745 /// the second one represents the 64 least significant.
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// # use uuid::Uuid;
751 /// # fn main() -> Result<(), uuid::Error> {
752 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
753 /// assert_eq!(
754 /// uuid.as_u64_pair(),
755 /// (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
756 /// );
757 /// # Ok(())
758 /// # }
759 /// ```
760 pub const fn as_u64_pair(&self) -> (u64, u64) {
761 let value = self.as_u128();
762 ((value >> 64) as u64, value as u64)
763 }
764
765 /// Returns a slice of 16 octets containing the value.
766 ///
767 /// This method borrows the underlying byte value of the UUID.
768 ///
769 /// # Examples
770 ///
771 /// ```
772 /// # use uuid::Uuid;
773 /// let bytes1 = [
774 /// 0xa1, 0xa2, 0xa3, 0xa4,
775 /// 0xb1, 0xb2,
776 /// 0xc1, 0xc2,
777 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
778 /// ];
779 /// let uuid1 = Uuid::from_bytes_ref(&bytes1);
780 ///
781 /// let bytes2 = uuid1.as_bytes();
782 /// let uuid2 = Uuid::from_bytes_ref(bytes2);
783 ///
784 /// assert_eq!(uuid1, uuid2);
785 ///
786 /// assert!(std::ptr::eq(
787 /// uuid2 as *const Uuid as *const u8,
788 /// &bytes1 as *const [u8; 16] as *const u8,
789 /// ));
790 /// ```
791 #[inline]
792 pub const fn as_bytes(&self) -> &Bytes {
793 &self.0
794 }
795
796 /// Consumes self and returns the underlying byte value of the UUID.
797 ///
798 /// # Examples
799 ///
800 /// ```
801 /// # use uuid::Uuid;
802 /// let bytes = [
803 /// 0xa1, 0xa2, 0xa3, 0xa4,
804 /// 0xb1, 0xb2,
805 /// 0xc1, 0xc2,
806 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
807 /// ];
808 /// let uuid = Uuid::from_bytes(bytes);
809 /// assert_eq!(bytes, uuid.into_bytes());
810 /// ```
811 #[inline]
812 pub const fn into_bytes(self) -> Bytes {
813 self.0
814 }
815
816 /// Returns the bytes of the UUID in little-endian order.
817 ///
818 /// The bytes will be flipped to convert into little-endian order. This is
819 /// based on the endianness of the UUID, rather than the target environment
820 /// so bytes will be flipped on both big and little endian machines.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use uuid::Uuid;
826 ///
827 /// # fn main() -> Result<(), uuid::Error> {
828 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
829 ///
830 /// assert_eq!(
831 /// uuid.to_bytes_le(),
832 /// ([
833 /// 0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
834 /// 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
835 /// ])
836 /// );
837 /// # Ok(())
838 /// # }
839 /// ```
840 pub const fn to_bytes_le(&self) -> Bytes {
841 [
842 self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
843 self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
844 self.0[15],
845 ]
846 }
847
848 /// Tests if the UUID is nil (all zeros).
849 pub const fn is_nil(&self) -> bool {
850 self.as_u128() == u128::MIN
851 }
852
853 /// Tests if the UUID is max (all ones).
854 pub const fn is_max(&self) -> bool {
855 self.as_u128() == u128::MAX
856 }
857
858 /// A buffer that can be used for `encode_...` calls, that is
859 /// guaranteed to be long enough for any of the format adapters.
860 ///
861 /// # Examples
862 ///
863 /// ```
864 /// # use uuid::Uuid;
865 /// let uuid = Uuid::nil();
866 ///
867 /// assert_eq!(
868 /// uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
869 /// "00000000000000000000000000000000"
870 /// );
871 ///
872 /// assert_eq!(
873 /// uuid.hyphenated()
874 /// .encode_lower(&mut Uuid::encode_buffer()),
875 /// "00000000-0000-0000-0000-000000000000"
876 /// );
877 ///
878 /// assert_eq!(
879 /// uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
880 /// "urn:uuid:00000000-0000-0000-0000-000000000000"
881 /// );
882 /// ```
883 pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
884 [0; fmt::Urn::LENGTH]
885 }
886
887 /// If the UUID is the correct version (v1, v6, or v7) this will return
888 /// the timestamp in a version-agnostic [`Timestamp`]. For other versions
889 /// this will return `None`.
890 ///
891 /// # Roundtripping
892 ///
893 /// This method is unlikely to roundtrip a timestamp in a UUID due to the way
894 /// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
895 /// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
896 pub const fn get_timestamp(&self) -> Option<Timestamp> {
897 match self.get_version() {
898 Some(Version::Mac) => {
899 let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
900
901 Some(Timestamp::from_gregorian(ticks, counter))
902 }
903 Some(Version::SortMac) => {
904 let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
905
906 Some(Timestamp::from_gregorian(ticks, counter))
907 }
908 Some(Version::SortRand) => {
909 let millis = timestamp::decode_unix_timestamp_millis(self);
910
911 let seconds = millis / 1000;
912 let nanos = ((millis % 1000) * 1_000_000) as u32;
913
914 Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
915 }
916 _ => None,
917 }
918 }
919
920 /// If the UUID is the correct version (v1, or v6) this will return the
921 /// node value as a 6-byte array. For other versions this will return `None`.
922 pub const fn get_node_id(&self) -> Option<[u8; 6]> {
923 match self.get_version() {
924 Some(Version::Mac) | Some(Version::SortMac) => {
925 let mut node_id = [0; 6];
926
927 node_id[0] = self.0[10];
928 node_id[1] = self.0[11];
929 node_id[2] = self.0[12];
930 node_id[3] = self.0[13];
931 node_id[4] = self.0[14];
932 node_id[5] = self.0[15];
933
934 Some(node_id)
935 }
936 _ => None,
937 }
938 }
939}
940
941impl Default for Uuid {
942 #[inline]
943 fn default() -> Self {
944 Uuid::nil()
945 }
946}
947
948impl AsRef<Uuid> for Uuid {
949 #[inline]
950 fn as_ref(&self) -> &Uuid {
951 self
952 }
953}
954
955impl AsRef<[u8]> for Uuid {
956 #[inline]
957 fn as_ref(&self) -> &[u8] {
958 &self.0
959 }
960}
961
962#[cfg(feature = "std")]
963impl From<Uuid> for std::vec::Vec<u8> {
964 fn from(value: Uuid) -> Self {
965 value.0.to_vec()
966 }
967}
968
969#[cfg(feature = "std")]
970impl std::convert::TryFrom<std::vec::Vec<u8>> for Uuid {
971 type Error = Error;
972
973 fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
974 Uuid::from_slice(&value)
975 }
976}
977
978#[cfg(feature = "serde")]
979pub mod serde {
980 //! Adapters for alternative `serde` formats.
981 //!
982 //! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
983 //! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
984 //! and deserialized.
985
986 pub use crate::external::serde_support::{braced, compact, simple, urn};
987}
988
989#[cfg(test)]
990mod tests {
991 use super::*;
992
993 use crate::std::string::{String, ToString};
994
995 #[cfg(all(
996 target_arch = "wasm32",
997 target_vendor = "unknown",
998 target_os = "unknown"
999 ))]
1000 use wasm_bindgen_test::*;
1001
1002 macro_rules! check {
1003 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1004 $buf.clear();
1005 write!($buf, $format, $target).unwrap();
1006 assert!($buf.len() == $len);
1007 assert!($buf.chars().all($cond), "{}", $buf);
1008 };
1009 }
1010
1011 pub const fn new() -> Uuid {
1012 Uuid::from_bytes([
1013 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAA, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1014 0xA1, 0xE4,
1015 ])
1016 }
1017
1018 pub const fn new2() -> Uuid {
1019 Uuid::from_bytes([
1020 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAB, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1021 0xA1, 0xE4,
1022 ])
1023 }
1024
1025 #[test]
1026 #[cfg_attr(
1027 all(
1028 target_arch = "wasm32",
1029 target_vendor = "unknown",
1030 target_os = "unknown"
1031 ),
1032 wasm_bindgen_test
1033 )]
1034 fn test_uuid_compare() {
1035 let uuid1 = new();
1036 let uuid2 = new2();
1037
1038 assert_eq!(uuid1, uuid1);
1039 assert_eq!(uuid2, uuid2);
1040
1041 assert_ne!(uuid1, uuid2);
1042 assert_ne!(uuid2, uuid1);
1043 }
1044
1045 #[test]
1046 #[cfg_attr(
1047 all(
1048 target_arch = "wasm32",
1049 target_vendor = "unknown",
1050 target_os = "unknown"
1051 ),
1052 wasm_bindgen_test
1053 )]
1054 fn test_uuid_default() {
1055 let default_uuid = Uuid::default();
1056 let nil_uuid = Uuid::nil();
1057
1058 assert_eq!(default_uuid, nil_uuid);
1059 }
1060
1061 #[test]
1062 #[cfg_attr(
1063 all(
1064 target_arch = "wasm32",
1065 target_vendor = "unknown",
1066 target_os = "unknown"
1067 ),
1068 wasm_bindgen_test
1069 )]
1070 fn test_uuid_display() {
1071 use crate::std::fmt::Write;
1072
1073 let uuid = new();
1074 let s = uuid.to_string();
1075 let mut buffer = String::new();
1076
1077 assert_eq!(s, uuid.hyphenated().to_string());
1078
1079 check!(buffer, "{}", uuid, 36, |c| c.is_lowercase()
1080 || c.is_digit(10)
1081 || c == '-');
1082 }
1083
1084 #[test]
1085 #[cfg_attr(
1086 all(
1087 target_arch = "wasm32",
1088 target_vendor = "unknown",
1089 target_os = "unknown"
1090 ),
1091 wasm_bindgen_test
1092 )]
1093 fn test_uuid_lowerhex() {
1094 use crate::std::fmt::Write;
1095
1096 let mut buffer = String::new();
1097 let uuid = new();
1098
1099 check!(buffer, "{:x}", uuid, 36, |c| c.is_lowercase()
1100 || c.is_digit(10)
1101 || c == '-');
1102 }
1103
1104 // noinspection RsAssertEqual
1105 #[test]
1106 #[cfg_attr(
1107 all(
1108 target_arch = "wasm32",
1109 target_vendor = "unknown",
1110 target_os = "unknown"
1111 ),
1112 wasm_bindgen_test
1113 )]
1114 fn test_uuid_operator_eq() {
1115 let uuid1 = new();
1116 let uuid1_dup = uuid1.clone();
1117 let uuid2 = new2();
1118
1119 assert!(uuid1 == uuid1);
1120 assert!(uuid1 == uuid1_dup);
1121 assert!(uuid1_dup == uuid1);
1122
1123 assert!(uuid1 != uuid2);
1124 assert!(uuid2 != uuid1);
1125 assert!(uuid1_dup != uuid2);
1126 assert!(uuid2 != uuid1_dup);
1127 }
1128
1129 #[test]
1130 #[cfg_attr(
1131 all(
1132 target_arch = "wasm32",
1133 target_vendor = "unknown",
1134 target_os = "unknown"
1135 ),
1136 wasm_bindgen_test
1137 )]
1138 fn test_uuid_to_string() {
1139 use crate::std::fmt::Write;
1140
1141 let uuid = new();
1142 let s = uuid.to_string();
1143 let mut buffer = String::new();
1144
1145 assert_eq!(s.len(), 36);
1146
1147 check!(buffer, "{}", s, 36, |c| c.is_lowercase()
1148 || c.is_digit(10)
1149 || c == '-');
1150 }
1151
1152 #[test]
1153 #[cfg_attr(
1154 all(
1155 target_arch = "wasm32",
1156 target_vendor = "unknown",
1157 target_os = "unknown"
1158 ),
1159 wasm_bindgen_test
1160 )]
1161 fn test_non_conforming() {
1162 let from_bytes =
1163 Uuid::from_bytes([4, 54, 67, 12, 43, 2, 2, 76, 32, 50, 87, 5, 1, 33, 43, 87]);
1164
1165 assert_eq!(from_bytes.get_version(), None);
1166 }
1167
1168 #[test]
1169 #[cfg_attr(
1170 all(
1171 target_arch = "wasm32",
1172 target_vendor = "unknown",
1173 target_os = "unknown"
1174 ),
1175 wasm_bindgen_test
1176 )]
1177 fn test_nil() {
1178 let nil = Uuid::nil();
1179 let not_nil = new();
1180
1181 assert!(nil.is_nil());
1182 assert!(!not_nil.is_nil());
1183
1184 assert_eq!(nil.get_version(), Some(Version::Nil));
1185 assert_eq!(not_nil.get_version(), Some(Version::Random));
1186
1187 assert_eq!(
1188 nil,
1189 Builder::from_bytes([0; 16])
1190 .with_version(Version::Nil)
1191 .into_uuid()
1192 );
1193 }
1194
1195 #[test]
1196 #[cfg_attr(
1197 all(
1198 target_arch = "wasm32",
1199 target_vendor = "unknown",
1200 target_os = "unknown"
1201 ),
1202 wasm_bindgen_test
1203 )]
1204 fn test_max() {
1205 let max = Uuid::max();
1206 let not_max = new();
1207
1208 assert!(max.is_max());
1209 assert!(!not_max.is_max());
1210
1211 assert_eq!(max.get_version(), Some(Version::Max));
1212 assert_eq!(not_max.get_version(), Some(Version::Random));
1213
1214 assert_eq!(
1215 max,
1216 Builder::from_bytes([0xff; 16])
1217 .with_version(Version::Max)
1218 .into_uuid()
1219 );
1220 }
1221
1222 #[test]
1223 #[cfg_attr(
1224 all(
1225 target_arch = "wasm32",
1226 target_vendor = "unknown",
1227 target_os = "unknown"
1228 ),
1229 wasm_bindgen_test
1230 )]
1231 fn test_predefined_namespaces() {
1232 assert_eq!(
1233 Uuid::NAMESPACE_DNS.hyphenated().to_string(),
1234 "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
1235 );
1236 assert_eq!(
1237 Uuid::NAMESPACE_URL.hyphenated().to_string(),
1238 "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
1239 );
1240 assert_eq!(
1241 Uuid::NAMESPACE_OID.hyphenated().to_string(),
1242 "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
1243 );
1244 assert_eq!(
1245 Uuid::NAMESPACE_X500.hyphenated().to_string(),
1246 "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
1247 );
1248 }
1249
1250 #[cfg(feature = "v3")]
1251 #[test]
1252 #[cfg_attr(
1253 all(
1254 target_arch = "wasm32",
1255 target_vendor = "unknown",
1256 target_os = "unknown"
1257 ),
1258 wasm_bindgen_test
1259 )]
1260 fn test_get_version_v3() {
1261 let uuid = Uuid::new_v3(&Uuid::NAMESPACE_DNS, "rust-lang.org".as_bytes());
1262
1263 assert_eq!(uuid.get_version().unwrap(), Version::Md5);
1264 assert_eq!(uuid.get_version_num(), 3);
1265 }
1266
1267 #[test]
1268 #[cfg_attr(
1269 all(
1270 target_arch = "wasm32",
1271 target_vendor = "unknown",
1272 target_os = "unknown"
1273 ),
1274 wasm_bindgen_test
1275 )]
1276 fn test_get_timestamp_unsupported_version() {
1277 let uuid = new();
1278
1279 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1280 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1281 assert_ne!(Version::SortRand, uuid.get_version().unwrap());
1282
1283 assert!(uuid.get_timestamp().is_none());
1284 }
1285
1286 #[test]
1287 #[cfg_attr(
1288 all(
1289 target_arch = "wasm32",
1290 target_vendor = "unknown",
1291 target_os = "unknown"
1292 ),
1293 wasm_bindgen_test
1294 )]
1295 fn test_get_node_id_unsupported_version() {
1296 let uuid = new();
1297
1298 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1299 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1300
1301 assert!(uuid.get_node_id().is_none());
1302 }
1303
1304 #[test]
1305 #[cfg_attr(
1306 all(
1307 target_arch = "wasm32",
1308 target_vendor = "unknown",
1309 target_os = "unknown"
1310 ),
1311 wasm_bindgen_test
1312 )]
1313 fn test_get_variant() {
1314 let uuid1 = new();
1315 let uuid2 = Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap();
1316 let uuid3 = Uuid::parse_str("67e55044-10b1-426f-9247-bb680e5fe0c8").unwrap();
1317 let uuid4 = Uuid::parse_str("936DA01F9ABD4d9dC0C702AF85C822A8").unwrap();
1318 let uuid5 = Uuid::parse_str("F9168C5E-CEB2-4faa-D6BF-329BF39FA1E4").unwrap();
1319 let uuid6 = Uuid::parse_str("f81d4fae-7dec-11d0-7765-00a0c91e6bf6").unwrap();
1320
1321 assert_eq!(uuid1.get_variant(), Variant::RFC4122);
1322 assert_eq!(uuid2.get_variant(), Variant::RFC4122);
1323 assert_eq!(uuid3.get_variant(), Variant::RFC4122);
1324 assert_eq!(uuid4.get_variant(), Variant::Microsoft);
1325 assert_eq!(uuid5.get_variant(), Variant::Microsoft);
1326 assert_eq!(uuid6.get_variant(), Variant::NCS);
1327 }
1328
1329 #[test]
1330 #[cfg_attr(
1331 all(
1332 target_arch = "wasm32",
1333 target_vendor = "unknown",
1334 target_os = "unknown"
1335 ),
1336 wasm_bindgen_test
1337 )]
1338 fn test_to_simple_string() {
1339 let uuid1 = new();
1340 let s = uuid1.simple().to_string();
1341
1342 assert_eq!(s.len(), 32);
1343 assert!(s.chars().all(|c| c.is_digit(16)));
1344 }
1345
1346 #[test]
1347 #[cfg_attr(
1348 all(
1349 target_arch = "wasm32",
1350 target_vendor = "unknown",
1351 target_os = "unknown"
1352 ),
1353 wasm_bindgen_test
1354 )]
1355 fn test_hyphenated_string() {
1356 let uuid1 = new();
1357 let s = uuid1.hyphenated().to_string();
1358
1359 assert_eq!(36, s.len());
1360 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1361 }
1362
1363 #[test]
1364 #[cfg_attr(
1365 all(
1366 target_arch = "wasm32",
1367 target_vendor = "unknown",
1368 target_os = "unknown"
1369 ),
1370 wasm_bindgen_test
1371 )]
1372 fn test_upper_lower_hex() {
1373 use std::fmt::Write;
1374
1375 let mut buf = String::new();
1376 let u = new();
1377
1378 macro_rules! check {
1379 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1380 $buf.clear();
1381 write!($buf, $format, $target).unwrap();
1382 assert_eq!($len, buf.len());
1383 assert!($buf.chars().all($cond), "{}", $buf);
1384 };
1385 }
1386
1387 check!(buf, "{:x}", u, 36, |c| c.is_lowercase()
1388 || c.is_digit(10)
1389 || c == '-');
1390 check!(buf, "{:X}", u, 36, |c| c.is_uppercase()
1391 || c.is_digit(10)
1392 || c == '-');
1393 check!(buf, "{:#x}", u, 36, |c| c.is_lowercase()
1394 || c.is_digit(10)
1395 || c == '-');
1396 check!(buf, "{:#X}", u, 36, |c| c.is_uppercase()
1397 || c.is_digit(10)
1398 || c == '-');
1399
1400 check!(buf, "{:X}", u.hyphenated(), 36, |c| c.is_uppercase()
1401 || c.is_digit(10)
1402 || c == '-');
1403 check!(buf, "{:X}", u.simple(), 32, |c| c.is_uppercase()
1404 || c.is_digit(10));
1405 check!(buf, "{:#X}", u.hyphenated(), 36, |c| c.is_uppercase()
1406 || c.is_digit(10)
1407 || c == '-');
1408 check!(buf, "{:#X}", u.simple(), 32, |c| c.is_uppercase()
1409 || c.is_digit(10));
1410
1411 check!(buf, "{:x}", u.hyphenated(), 36, |c| c.is_lowercase()
1412 || c.is_digit(10)
1413 || c == '-');
1414 check!(buf, "{:x}", u.simple(), 32, |c| c.is_lowercase()
1415 || c.is_digit(10));
1416 check!(buf, "{:#x}", u.hyphenated(), 36, |c| c.is_lowercase()
1417 || c.is_digit(10)
1418 || c == '-');
1419 check!(buf, "{:#x}", u.simple(), 32, |c| c.is_lowercase()
1420 || c.is_digit(10));
1421 }
1422
1423 #[test]
1424 #[cfg_attr(
1425 all(
1426 target_arch = "wasm32",
1427 target_vendor = "unknown",
1428 target_os = "unknown"
1429 ),
1430 wasm_bindgen_test
1431 )]
1432 fn test_to_urn_string() {
1433 let uuid1 = new();
1434 let ss = uuid1.urn().to_string();
1435 let s = &ss[9..];
1436
1437 assert!(ss.starts_with("urn:uuid:"));
1438 assert_eq!(s.len(), 36);
1439 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1440 }
1441
1442 #[test]
1443 #[cfg_attr(
1444 all(
1445 target_arch = "wasm32",
1446 target_vendor = "unknown",
1447 target_os = "unknown"
1448 ),
1449 wasm_bindgen_test
1450 )]
1451 fn test_to_simple_string_matching() {
1452 let uuid1 = new();
1453
1454 let hs = uuid1.hyphenated().to_string();
1455 let ss = uuid1.simple().to_string();
1456
1457 let hsn = hs.chars().filter(|&c| c != '-').collect::<String>();
1458
1459 assert_eq!(hsn, ss);
1460 }
1461
1462 #[test]
1463 #[cfg_attr(
1464 all(
1465 target_arch = "wasm32",
1466 target_vendor = "unknown",
1467 target_os = "unknown"
1468 ),
1469 wasm_bindgen_test
1470 )]
1471 fn test_string_roundtrip() {
1472 let uuid = new();
1473
1474 let hs = uuid.hyphenated().to_string();
1475 let uuid_hs = Uuid::parse_str(&hs).unwrap();
1476 assert_eq!(uuid_hs, uuid);
1477
1478 let ss = uuid.to_string();
1479 let uuid_ss = Uuid::parse_str(&ss).unwrap();
1480 assert_eq!(uuid_ss, uuid);
1481 }
1482
1483 #[test]
1484 #[cfg_attr(
1485 all(
1486 target_arch = "wasm32",
1487 target_vendor = "unknown",
1488 target_os = "unknown"
1489 ),
1490 wasm_bindgen_test
1491 )]
1492 fn test_from_fields() {
1493 let d1: u32 = 0xa1a2a3a4;
1494 let d2: u16 = 0xb1b2;
1495 let d3: u16 = 0xc1c2;
1496 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1497
1498 let u = Uuid::from_fields(d1, d2, d3, &d4);
1499
1500 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1501 let result = u.simple().to_string();
1502 assert_eq!(result, expected);
1503 }
1504
1505 #[test]
1506 #[cfg_attr(
1507 all(
1508 target_arch = "wasm32",
1509 target_vendor = "unknown",
1510 target_os = "unknown"
1511 ),
1512 wasm_bindgen_test
1513 )]
1514 fn test_from_fields_le() {
1515 let d1: u32 = 0xa4a3a2a1;
1516 let d2: u16 = 0xb2b1;
1517 let d3: u16 = 0xc2c1;
1518 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1519
1520 let u = Uuid::from_fields_le(d1, d2, d3, &d4);
1521
1522 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1523 let result = u.simple().to_string();
1524 assert_eq!(result, expected);
1525 }
1526
1527 #[test]
1528 #[cfg_attr(
1529 all(
1530 target_arch = "wasm32",
1531 target_vendor = "unknown",
1532 target_os = "unknown"
1533 ),
1534 wasm_bindgen_test
1535 )]
1536 fn test_as_fields() {
1537 let u = new();
1538 let (d1, d2, d3, d4) = u.as_fields();
1539
1540 assert_ne!(d1, 0);
1541 assert_ne!(d2, 0);
1542 assert_ne!(d3, 0);
1543 assert_eq!(d4.len(), 8);
1544 assert!(!d4.iter().all(|&b| b == 0));
1545 }
1546
1547 #[test]
1548 #[cfg_attr(
1549 all(
1550 target_arch = "wasm32",
1551 target_vendor = "unknown",
1552 target_os = "unknown"
1553 ),
1554 wasm_bindgen_test
1555 )]
1556 fn test_fields_roundtrip() {
1557 let d1_in: u32 = 0xa1a2a3a4;
1558 let d2_in: u16 = 0xb1b2;
1559 let d3_in: u16 = 0xc1c2;
1560 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1561
1562 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1563 let (d1_out, d2_out, d3_out, d4_out) = u.as_fields();
1564
1565 assert_eq!(d1_in, d1_out);
1566 assert_eq!(d2_in, d2_out);
1567 assert_eq!(d3_in, d3_out);
1568 assert_eq!(d4_in, d4_out);
1569 }
1570
1571 #[test]
1572 #[cfg_attr(
1573 all(
1574 target_arch = "wasm32",
1575 target_vendor = "unknown",
1576 target_os = "unknown"
1577 ),
1578 wasm_bindgen_test
1579 )]
1580 fn test_fields_le_roundtrip() {
1581 let d1_in: u32 = 0xa4a3a2a1;
1582 let d2_in: u16 = 0xb2b1;
1583 let d3_in: u16 = 0xc2c1;
1584 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1585
1586 let u = Uuid::from_fields_le(d1_in, d2_in, d3_in, d4_in);
1587 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1588
1589 assert_eq!(d1_in, d1_out);
1590 assert_eq!(d2_in, d2_out);
1591 assert_eq!(d3_in, d3_out);
1592 assert_eq!(d4_in, d4_out);
1593 }
1594
1595 #[test]
1596 #[cfg_attr(
1597 all(
1598 target_arch = "wasm32",
1599 target_vendor = "unknown",
1600 target_os = "unknown"
1601 ),
1602 wasm_bindgen_test
1603 )]
1604 fn test_fields_le_are_actually_le() {
1605 let d1_in: u32 = 0xa1a2a3a4;
1606 let d2_in: u16 = 0xb1b2;
1607 let d3_in: u16 = 0xc1c2;
1608 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1609
1610 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1611 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1612
1613 assert_eq!(d1_in, d1_out.swap_bytes());
1614 assert_eq!(d2_in, d2_out.swap_bytes());
1615 assert_eq!(d3_in, d3_out.swap_bytes());
1616 assert_eq!(d4_in, d4_out);
1617 }
1618
1619 #[test]
1620 #[cfg_attr(
1621 all(
1622 target_arch = "wasm32",
1623 target_vendor = "unknown",
1624 target_os = "unknown"
1625 ),
1626 wasm_bindgen_test
1627 )]
1628 fn test_from_u128() {
1629 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1630
1631 let u = Uuid::from_u128(v_in);
1632
1633 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1634 let result = u.simple().to_string();
1635 assert_eq!(result, expected);
1636 }
1637
1638 #[test]
1639 #[cfg_attr(
1640 all(
1641 target_arch = "wasm32",
1642 target_vendor = "unknown",
1643 target_os = "unknown"
1644 ),
1645 wasm_bindgen_test
1646 )]
1647 fn test_from_u128_le() {
1648 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1649
1650 let u = Uuid::from_u128_le(v_in);
1651
1652 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1653 let result = u.simple().to_string();
1654 assert_eq!(result, expected);
1655 }
1656
1657 #[test]
1658 #[cfg_attr(
1659 all(
1660 target_arch = "wasm32",
1661 target_vendor = "unknown",
1662 target_os = "unknown"
1663 ),
1664 wasm_bindgen_test
1665 )]
1666 fn test_from_u64_pair() {
1667 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1668 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1669
1670 let u = Uuid::from_u64_pair(high_in, low_in);
1671
1672 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1673 let result = u.simple().to_string();
1674 assert_eq!(result, expected);
1675 }
1676
1677 #[test]
1678 #[cfg_attr(
1679 all(
1680 target_arch = "wasm32",
1681 target_vendor = "unknown",
1682 target_os = "unknown"
1683 ),
1684 wasm_bindgen_test
1685 )]
1686 fn test_u128_roundtrip() {
1687 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1688
1689 let u = Uuid::from_u128(v_in);
1690 let v_out = u.as_u128();
1691
1692 assert_eq!(v_in, v_out);
1693 }
1694
1695 #[test]
1696 #[cfg_attr(
1697 all(
1698 target_arch = "wasm32",
1699 target_vendor = "unknown",
1700 target_os = "unknown"
1701 ),
1702 wasm_bindgen_test
1703 )]
1704 fn test_u128_le_roundtrip() {
1705 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1706
1707 let u = Uuid::from_u128_le(v_in);
1708 let v_out = u.to_u128_le();
1709
1710 assert_eq!(v_in, v_out);
1711 }
1712
1713 #[test]
1714 #[cfg_attr(
1715 all(
1716 target_arch = "wasm32",
1717 target_vendor = "unknown",
1718 target_os = "unknown"
1719 ),
1720 wasm_bindgen_test
1721 )]
1722 fn test_u64_pair_roundtrip() {
1723 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1724 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1725
1726 let u = Uuid::from_u64_pair(high_in, low_in);
1727 let (high_out, low_out) = u.as_u64_pair();
1728
1729 assert_eq!(high_in, high_out);
1730 assert_eq!(low_in, low_out);
1731 }
1732
1733 #[test]
1734 #[cfg_attr(
1735 all(
1736 target_arch = "wasm32",
1737 target_vendor = "unknown",
1738 target_os = "unknown"
1739 ),
1740 wasm_bindgen_test
1741 )]
1742 fn test_u128_le_is_actually_le() {
1743 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1744
1745 let u = Uuid::from_u128(v_in);
1746 let v_out = u.to_u128_le();
1747
1748 assert_eq!(v_in, v_out.swap_bytes());
1749 }
1750
1751 #[test]
1752 #[cfg_attr(
1753 all(
1754 target_arch = "wasm32",
1755 target_vendor = "unknown",
1756 target_os = "unknown"
1757 ),
1758 wasm_bindgen_test
1759 )]
1760 fn test_from_slice() {
1761 let b = [
1762 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1763 0xd7, 0xd8,
1764 ];
1765
1766 let u = Uuid::from_slice(&b).unwrap();
1767 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1768
1769 assert_eq!(u.simple().to_string(), expected);
1770 }
1771
1772 #[test]
1773 #[cfg_attr(
1774 all(
1775 target_arch = "wasm32",
1776 target_vendor = "unknown",
1777 target_os = "unknown"
1778 ),
1779 wasm_bindgen_test
1780 )]
1781 fn test_from_bytes() {
1782 let b = [
1783 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1784 0xd7, 0xd8,
1785 ];
1786
1787 let u = Uuid::from_bytes(b);
1788 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1789
1790 assert_eq!(u.simple().to_string(), expected);
1791 }
1792
1793 #[test]
1794 #[cfg_attr(
1795 all(
1796 target_arch = "wasm32",
1797 target_vendor = "unknown",
1798 target_os = "unknown"
1799 ),
1800 wasm_bindgen_test
1801 )]
1802 fn test_as_bytes() {
1803 let u = new();
1804 let ub = u.as_bytes();
1805 let ur: &[u8] = u.as_ref();
1806
1807 assert_eq!(ub.len(), 16);
1808 assert_eq!(ur.len(), 16);
1809 assert!(!ub.iter().all(|&b| b == 0));
1810 assert!(!ur.iter().all(|&b| b == 0));
1811 }
1812
1813 #[test]
1814 #[cfg(feature = "std")]
1815 #[cfg_attr(
1816 all(
1817 target_arch = "wasm32",
1818 target_vendor = "unknown",
1819 target_os = "unknown"
1820 ),
1821 wasm_bindgen_test
1822 )]
1823 fn test_convert_vec() {
1824 use crate::std::{convert::TryInto, vec::Vec};
1825
1826 let u = new();
1827 let ub: &[u8] = u.as_ref();
1828
1829 let v: Vec<u8> = u.into();
1830
1831 assert_eq!(&v, ub);
1832
1833 let uv: Uuid = v.try_into().unwrap();
1834
1835 assert_eq!(uv, u);
1836 }
1837
1838 #[test]
1839 #[cfg_attr(
1840 all(
1841 target_arch = "wasm32",
1842 target_vendor = "unknown",
1843 target_os = "unknown"
1844 ),
1845 wasm_bindgen_test
1846 )]
1847 fn test_bytes_roundtrip() {
1848 let b_in: crate::Bytes = [
1849 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1850 0xd7, 0xd8,
1851 ];
1852
1853 let u = Uuid::from_slice(&b_in).unwrap();
1854
1855 let b_out = u.as_bytes();
1856
1857 assert_eq!(&b_in, b_out);
1858 }
1859
1860 #[test]
1861 #[cfg_attr(
1862 all(
1863 target_arch = "wasm32",
1864 target_vendor = "unknown",
1865 target_os = "unknown"
1866 ),
1867 wasm_bindgen_test
1868 )]
1869 fn test_bytes_le_roundtrip() {
1870 let b = [
1871 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1872 0xd7, 0xd8,
1873 ];
1874
1875 let u1 = Uuid::from_bytes(b);
1876
1877 let b_le = u1.to_bytes_le();
1878
1879 let u2 = Uuid::from_bytes_le(b_le);
1880
1881 assert_eq!(u1, u2);
1882 }
1883
1884 #[test]
1885 #[cfg_attr(
1886 all(
1887 target_arch = "wasm32",
1888 target_vendor = "unknown",
1889 target_os = "unknown"
1890 ),
1891 wasm_bindgen_test
1892 )]
1893 fn test_iterbytes_impl_for_uuid() {
1894 let mut set = std::collections::HashSet::new();
1895 let id1 = new();
1896 let id2 = new2();
1897 set.insert(id1.clone());
1898
1899 assert!(set.contains(&id1));
1900 assert!(!set.contains(&id2));
1901 }
1902}