indexmap/set/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
use super::{Bucket, Entries, IndexSet, IntoIter, Iter};
use crate::util::try_simplify_range;

use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{self, Bound, Index, RangeBounds};

/// A dynamically-sized slice of values in an [`IndexSet`].
///
/// This supports indexed operations much like a `[T]` slice,
/// but not any hashed operations on the values.
///
/// Unlike `IndexSet`, `Slice` does consider the order for [`PartialEq`]
/// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`].
#[repr(transparent)]
pub struct Slice<T> {
    pub(crate) entries: [Bucket<T>],
}

// SAFETY: `Slice<T>` is a transparent wrapper around `[Bucket<T>]`,
// and reference lifetimes are bound together in function signatures.
#[allow(unsafe_code)]
impl<T> Slice<T> {
    pub(super) const fn from_slice(entries: &[Bucket<T>]) -> &Self {
        unsafe { &*(entries as *const [Bucket<T>] as *const Self) }
    }

    pub(super) fn from_boxed(entries: Box<[Bucket<T>]>) -> Box<Self> {
        unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) }
    }

    fn into_boxed(self: Box<Self>) -> Box<[Bucket<T>]> {
        unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket<T>]) }
    }
}

impl<T> Slice<T> {
    pub(crate) fn into_entries(self: Box<Self>) -> Vec<Bucket<T>> {
        self.into_boxed().into_vec()
    }

    /// Returns an empty slice.
    pub const fn new<'a>() -> &'a Self {
        Self::from_slice(&[])
    }

    /// Return the number of elements in the set slice.
    pub const fn len(&self) -> usize {
        self.entries.len()
    }

    /// Returns true if the set slice contains no elements.
    pub const fn is_empty(&self) -> bool {
        self.entries.is_empty()
    }

    /// Get a value by index.
    ///
    /// Valid indices are *0 <= index < self.len()*
    pub fn get_index(&self, index: usize) -> Option<&T> {
        self.entries.get(index).map(Bucket::key_ref)
    }

    /// Returns a slice of values in the given range of indices.
    ///
    /// Valid indices are *0 <= index < self.len()*
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Self> {
        let range = try_simplify_range(range, self.entries.len())?;
        self.entries.get(range).map(Self::from_slice)
    }

    /// Get the first value.
    pub fn first(&self) -> Option<&T> {
        self.entries.first().map(Bucket::key_ref)
    }

    /// Get the last value.
    pub fn last(&self) -> Option<&T> {
        self.entries.last().map(Bucket::key_ref)
    }

    /// Divides one slice into two at an index.
    ///
    /// ***Panics*** if `index > len`.
    pub fn split_at(&self, index: usize) -> (&Self, &Self) {
        let (first, second) = self.entries.split_at(index);
        (Self::from_slice(first), Self::from_slice(second))
    }

    /// Returns the first value and the rest of the slice,
    /// or `None` if it is empty.
    pub fn split_first(&self) -> Option<(&T, &Self)> {
        if let [first, rest @ ..] = &self.entries {
            Some((&first.key, Self::from_slice(rest)))
        } else {
            None
        }
    }

    /// Returns the last value and the rest of the slice,
    /// or `None` if it is empty.
    pub fn split_last(&self) -> Option<(&T, &Self)> {
        if let [rest @ .., last] = &self.entries {
            Some((&last.key, Self::from_slice(rest)))
        } else {
            None
        }
    }

    /// Return an iterator over the values of the set slice.
    pub fn iter(&self) -> Iter<'_, T> {
        Iter::new(&self.entries)
    }

    /// Search over a sorted set for a value.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search`] for more details.
    ///
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up in
    /// the set this is a slice from using [`IndexSet::get_index_of`], but this can also position
    /// missing values.
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
    where
        T: Ord,
    {
        self.binary_search_by(|p| p.cmp(x))
    }

    /// Search over a sorted set with a comparator function.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[inline]
    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> Ordering,
    {
        self.entries.binary_search_by(move |a| f(&a.key))
    }

    /// Search over a sorted set with an extraction function.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[inline]
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> B,
        B: Ord,
    {
        self.binary_search_by(|k| f(k).cmp(b))
    }

    /// Returns the index of the partition point of a sorted set according to the given predicate
    /// (the index of the first element of the second partition).
    ///
    /// See [`slice::partition_point`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[must_use]
    pub fn partition_point<P>(&self, mut pred: P) -> usize
    where
        P: FnMut(&T) -> bool,
    {
        self.entries.partition_point(move |a| pred(&a.key))
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type IntoIter = Iter<'a, T>;
    type Item = &'a T;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<T> IntoIterator for Box<Slice<T>> {
    type IntoIter = IntoIter<T>;
    type Item = T;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self.into_entries())
    }
}

impl<T> Default for &'_ Slice<T> {
    fn default() -> Self {
        Slice::from_slice(&[])
    }
}

impl<T> Default for Box<Slice<T>> {
    fn default() -> Self {
        Slice::from_boxed(Box::default())
    }
}

impl<T: Clone> Clone for Box<Slice<T>> {
    fn clone(&self) -> Self {
        Slice::from_boxed(self.entries.to_vec().into_boxed_slice())
    }
}

impl<T: Copy> From<&Slice<T>> for Box<Slice<T>> {
    fn from(slice: &Slice<T>) -> Self {
        Slice::from_boxed(Box::from(&slice.entries))
    }
}

impl<T: fmt::Debug> fmt::Debug for Slice<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self).finish()
    }
}

impl<T: PartialEq> PartialEq for Slice<T> {
    fn eq(&self, other: &Self) -> bool {
        self.len() == other.len() && self.iter().eq(other)
    }
}

impl<T: Eq> Eq for Slice<T> {}

impl<T: PartialOrd> PartialOrd for Slice<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other)
    }
}

impl<T: Ord> Ord for Slice<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other)
    }
}

impl<T: Hash> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.len().hash(state);
        for value in self {
            value.hash(state);
        }
    }
}

impl<T> Index<usize> for Slice<T> {
    type Output = T;

    fn index(&self, index: usize) -> &Self::Output {
        &self.entries[index].key
    }
}

// We can't have `impl<I: RangeBounds<usize>> Index<I>` because that conflicts with `Index<usize>`.
// Instead, we repeat the implementations for all the core range types.
macro_rules! impl_index {
    ($($range:ty),*) => {$(
        impl<T, S> Index<$range> for IndexSet<T, S> {
            type Output = Slice<T>;

            fn index(&self, range: $range) -> &Self::Output {
                Slice::from_slice(&self.as_entries()[range])
            }
        }

        impl<T> Index<$range> for Slice<T> {
            type Output = Self;

            fn index(&self, range: $range) -> &Self::Output {
                Slice::from_slice(&self.entries[range])
            }
        }
    )*}
}
impl_index!(
    ops::Range<usize>,
    ops::RangeFrom<usize>,
    ops::RangeFull,
    ops::RangeInclusive<usize>,
    ops::RangeTo<usize>,
    ops::RangeToInclusive<usize>,
    (Bound<usize>, Bound<usize>)
);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn slice_index() {
        fn check(vec_slice: &[i32], set_slice: &Slice<i32>, sub_slice: &Slice<i32>) {
            assert_eq!(set_slice as *const _, sub_slice as *const _);
            itertools::assert_equal(vec_slice, set_slice);
        }

        let vec: Vec<i32> = (0..10).map(|i| i * i).collect();
        let set: IndexSet<i32> = vec.iter().cloned().collect();
        let slice = set.as_slice();

        // RangeFull
        check(&vec[..], &set[..], &slice[..]);

        for i in 0usize..10 {
            // Index
            assert_eq!(vec[i], set[i]);
            assert_eq!(vec[i], slice[i]);

            // RangeFrom
            check(&vec[i..], &set[i..], &slice[i..]);

            // RangeTo
            check(&vec[..i], &set[..i], &slice[..i]);

            // RangeToInclusive
            check(&vec[..=i], &set[..=i], &slice[..=i]);

            // (Bound<usize>, Bound<usize>)
            let bounds = (Bound::Excluded(i), Bound::Unbounded);
            check(&vec[i + 1..], &set[bounds], &slice[bounds]);

            for j in i..=10 {
                // Range
                check(&vec[i..j], &set[i..j], &slice[i..j]);
            }

            for j in i..10 {
                // RangeInclusive
                check(&vec[i..=j], &set[i..=j], &slice[i..=j]);
            }
        }
    }
}