indexmap/map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
//! [`IndexMap`] is a hash table where the iteration order of the key-value
//! pairs is independent of the hash values of the keys.
mod core;
mod iter;
mod mutable;
mod slice;
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
pub mod serde_seq;
#[cfg(test)]
mod tests;
pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
pub use self::iter::{
Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice, Values, ValuesMut,
};
pub use self::mutable::MutableEntryKey;
pub use self::mutable::MutableKeys;
pub use self::slice::Slice;
#[cfg(feature = "rayon")]
pub use crate::rayon::map as rayon;
use ::core::cmp::Ordering;
use ::core::fmt;
use ::core::hash::{BuildHasher, Hash, Hasher};
use ::core::mem;
use ::core::ops::{Index, IndexMut, RangeBounds};
use alloc::boxed::Box;
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::collections::hash_map::RandomState;
use self::core::IndexMapCore;
use crate::util::{third, try_simplify_range};
use crate::{Bucket, Entries, Equivalent, HashValue, TryReserveError};
/// A hash table where the iteration order of the key-value pairs is independent
/// of the hash values of the keys.
///
/// The interface is closely compatible with the standard
/// [`HashMap`][std::collections::HashMap],
/// but also has additional features.
///
/// # Order
///
/// The key-value pairs have a consistent order that is determined by
/// the sequence of insertion and removal calls on the map. The order does
/// not depend on the keys or the hash function at all.
///
/// All iterators traverse the map in *the order*.
///
/// The insertion order is preserved, with **notable exceptions** like the
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
/// Methods such as [`.sort_by()`][Self::sort_by] of
/// course result in a new order, depending on the sorting order.
///
/// # Indices
///
/// The key-value pairs are indexed in a compact range without holes in the
/// range `0..self.len()`. For example, the method `.get_full` looks up the
/// index for a key, and the method `.get_index` looks up the key-value pair by
/// index.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// // count the frequency of each letter in a sentence.
/// let mut letters = IndexMap::new();
/// for ch in "a short treatise on fungi".chars() {
/// *letters.entry(ch).or_insert(0) += 1;
/// }
///
/// assert_eq!(letters[&'s'], 2);
/// assert_eq!(letters[&'t'], 3);
/// assert_eq!(letters[&'u'], 1);
/// assert_eq!(letters.get(&'y'), None);
/// ```
#[cfg(feature = "std")]
pub struct IndexMap<K, V, S = RandomState> {
pub(crate) core: IndexMapCore<K, V>,
hash_builder: S,
}
#[cfg(not(feature = "std"))]
pub struct IndexMap<K, V, S> {
pub(crate) core: IndexMapCore<K, V>,
hash_builder: S,
}
impl<K, V, S> Clone for IndexMap<K, V, S>
where
K: Clone,
V: Clone,
S: Clone,
{
fn clone(&self) -> Self {
IndexMap {
core: self.core.clone(),
hash_builder: self.hash_builder.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.core.clone_from(&other.core);
self.hash_builder.clone_from(&other.hash_builder);
}
}
impl<K, V, S> Entries for IndexMap<K, V, S> {
type Entry = Bucket<K, V>;
#[inline]
fn into_entries(self) -> Vec<Self::Entry> {
self.core.into_entries()
}
#[inline]
fn as_entries(&self) -> &[Self::Entry] {
self.core.as_entries()
}
#[inline]
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
self.core.as_entries_mut()
}
fn with_entries<F>(&mut self, f: F)
where
F: FnOnce(&mut [Self::Entry]),
{
self.core.with_entries(f);
}
}
impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[cfg(not(feature = "test_debug"))]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
#[cfg(feature = "test_debug")]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Let the inner `IndexMapCore` print all of its details
f.debug_struct("IndexMap")
.field("core", &self.core)
.finish()
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<K, V> IndexMap<K, V> {
/// Create a new map. (Does not allocate.)
#[inline]
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Create a new map with capacity for `n` key-value pairs. (Does not
/// allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
#[inline]
pub fn with_capacity(n: usize) -> Self {
Self::with_capacity_and_hasher(n, <_>::default())
}
}
impl<K, V, S> IndexMap<K, V, S> {
/// Create a new map with capacity for `n` key-value pairs. (Does not
/// allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
#[inline]
pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
if n == 0 {
Self::with_hasher(hash_builder)
} else {
IndexMap {
core: IndexMapCore::with_capacity(n),
hash_builder,
}
}
}
/// Create a new map with `hash_builder`.
///
/// This function is `const`, so it
/// can be called in `static` contexts.
pub const fn with_hasher(hash_builder: S) -> Self {
IndexMap {
core: IndexMapCore::new(),
hash_builder,
}
}
/// Return the number of elements the map can hold without reallocating.
///
/// This number is a lower bound; the map might be able to hold more,
/// but is guaranteed to be able to hold at least this many.
///
/// Computes in **O(1)** time.
pub fn capacity(&self) -> usize {
self.core.capacity()
}
/// Return a reference to the map's `BuildHasher`.
pub fn hasher(&self) -> &S {
&self.hash_builder
}
/// Return the number of key-value pairs in the map.
///
/// Computes in **O(1)** time.
#[inline]
pub fn len(&self) -> usize {
self.core.len()
}
/// Returns true if the map contains no elements.
///
/// Computes in **O(1)** time.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return an iterator over the key-value pairs of the map, in their order
pub fn iter(&self) -> Iter<'_, K, V> {
Iter::new(self.as_entries())
}
/// Return an iterator over the key-value pairs of the map, in their order
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
IterMut::new(self.as_entries_mut())
}
/// Return an iterator over the keys of the map, in their order
pub fn keys(&self) -> Keys<'_, K, V> {
Keys::new(self.as_entries())
}
/// Return an owning iterator over the keys of the map, in their order
pub fn into_keys(self) -> IntoKeys<K, V> {
IntoKeys::new(self.into_entries())
}
/// Return an iterator over the values of the map, in their order
pub fn values(&self) -> Values<'_, K, V> {
Values::new(self.as_entries())
}
/// Return an iterator over mutable references to the values of the map,
/// in their order
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
ValuesMut::new(self.as_entries_mut())
}
/// Return an owning iterator over the values of the map, in their order
pub fn into_values(self) -> IntoValues<K, V> {
IntoValues::new(self.into_entries())
}
/// Remove all key-value pairs in the map, while preserving its capacity.
///
/// Computes in **O(n)** time.
pub fn clear(&mut self) {
self.core.clear();
}
/// Shortens the map, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than the map's current length, this has no effect.
pub fn truncate(&mut self, len: usize) {
self.core.truncate(len);
}
/// Clears the `IndexMap` in the given index range, returning those
/// key-value pairs as a drain iterator.
///
/// The range may be any type that implements [`RangeBounds<usize>`],
/// including all of the `std::ops::Range*` types, or even a tuple pair of
/// `Bound` start and end values. To drain the map entirely, use `RangeFull`
/// like `map.drain(..)`.
///
/// This shifts down all entries following the drained range to fill the
/// gap, and keeps the allocated memory for reuse.
///
/// ***Panics*** if the starting point is greater than the end point or if
/// the end point is greater than the length of the map.
pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
where
R: RangeBounds<usize>,
{
Drain::new(self.core.drain(range))
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated map containing the elements in the range
/// `[at, len)`. After the call, the original map will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// ***Panics*** if `at > len`.
pub fn split_off(&mut self, at: usize) -> Self
where
S: Clone,
{
Self {
core: self.core.split_off(at),
hash_builder: self.hash_builder.clone(),
}
}
/// Reserve capacity for `additional` more key-value pairs.
///
/// Computes in **O(n)** time.
pub fn reserve(&mut self, additional: usize) {
self.core.reserve(additional);
}
/// Reserve capacity for `additional` more key-value pairs, without over-allocating.
///
/// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn reserve_exact(&mut self, additional: usize) {
self.core.reserve_exact(additional);
}
/// Try to reserve capacity for `additional` more key-value pairs.
///
/// Computes in **O(n)** time.
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.core.try_reserve(additional)
}
/// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
///
/// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.core.try_reserve_exact(additional)
}
/// Shrink the capacity of the map as much as possible.
///
/// Computes in **O(n)** time.
pub fn shrink_to_fit(&mut self) {
self.core.shrink_to(0);
}
/// Shrink the capacity of the map with a lower limit.
///
/// Computes in **O(n)** time.
pub fn shrink_to(&mut self, min_capacity: usize) {
self.core.shrink_to(min_capacity);
}
}
impl<K, V, S> IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher,
{
/// Insert a key-value pair in the map.
///
/// If an equivalent key already exists in the map: the key remains and
/// retains in its place in the order, its corresponding value is updated
/// with `value`, and the older value is returned inside `Some(_)`.
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted, last in order, and `None` is returned.
///
/// Computes in **O(1)** time (amortized average).
///
/// See also [`entry`][Self::entry] if you want to insert *or* modify,
/// or [`insert_full`][Self::insert_full] if you need to get the index of
/// the corresponding key-value pair.
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert_full(key, value).1
}
/// Insert a key-value pair in the map, and get their index.
///
/// If an equivalent key already exists in the map: the key remains and
/// retains in its place in the order, its corresponding value is updated
/// with `value`, and the older value is returned inside `(index, Some(_))`.
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted, last in order, and `(index, None)` is returned.
///
/// Computes in **O(1)** time (amortized average).
///
/// See also [`entry`][Self::entry] if you want to insert *or* modify.
pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
let hash = self.hash(&key);
self.core.insert_full(hash, key, value)
}
/// Insert a key-value pair in the map at its ordered position among sorted keys.
///
/// This is equivalent to finding the position with
/// [`binary_search_keys`][Self::binary_search_keys], then either updating
/// it or calling [`insert_before`][Self::insert_before] for a new key.
///
/// If the sorted key is found in the map, its corresponding value is
/// updated with `value`, and the older value is returned inside
/// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
/// the sorted position, and `(index, None)` is returned.
///
/// If the existing keys are **not** already sorted, then the insertion
/// index is unspecified (like [`slice::binary_search`]), but the key-value
/// pair is moved to or inserted at that position regardless.
///
/// Computes in **O(n)** time (average). Instead of repeating calls to
/// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
/// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
/// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
where
K: Ord,
{
match self.binary_search_keys(&key) {
Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
Err(i) => self.insert_before(i, key, value),
}
}
/// Insert a key-value pair in the map before the entry at the given index, or at the end.
///
/// If an equivalent key already exists in the map: the key remains and
/// is moved to the new position in the map, its corresponding value is updated
/// with `value`, and the older value is returned inside `Some(_)`. The returned index
/// will either be the given index or one less, depending on how the entry moved.
/// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted exactly at the given index, and `None` is returned.
///
/// ***Panics*** if `index` is out of bounds.
/// Valid indices are `0..=map.len()` (inclusive).
///
/// Computes in **O(n)** time (average).
///
/// See also [`entry`][Self::entry] if you want to insert *or* modify,
/// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
/// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
///
/// // The new key '*' goes exactly at the given index.
/// assert_eq!(map.get_index_of(&'*'), None);
/// assert_eq!(map.insert_before(10, '*', ()), (10, None));
/// assert_eq!(map.get_index_of(&'*'), Some(10));
///
/// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
/// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
/// assert_eq!(map.get_index_of(&'a'), Some(9));
/// assert_eq!(map.get_index_of(&'*'), Some(10));
///
/// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
/// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
/// assert_eq!(map.get_index_of(&'z'), Some(10));
/// assert_eq!(map.get_index_of(&'*'), Some(11));
///
/// // Moving or inserting before the endpoint is also valid.
/// assert_eq!(map.len(), 27);
/// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
/// assert_eq!(map.get_index_of(&'*'), Some(26));
/// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
/// assert_eq!(map.get_index_of(&'+'), Some(27));
/// assert_eq!(map.len(), 28);
/// ```
pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
assert!(index <= self.len(), "index out of bounds");
match self.entry(key) {
Entry::Occupied(mut entry) => {
if index > entry.index() {
// Some entries will shift down when this one moves up,
// so "insert before index" becomes "move to index - 1",
// keeping the entry at the original index unmoved.
index -= 1;
}
let old = mem::replace(entry.get_mut(), value);
entry.move_index(index);
(index, Some(old))
}
Entry::Vacant(entry) => {
entry.shift_insert(index, value);
(index, None)
}
}
}
/// Insert a key-value pair in the map at the given index.
///
/// If an equivalent key already exists in the map: the key remains and
/// is moved to the given index in the map, its corresponding value is updated
/// with `value`, and the older value is returned inside `Some(_)`.
/// Note that existing entries **cannot** be moved to `index == map.len()`!
/// (See [`insert_before`](Self::insert_before) for different behavior here.)
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted at the given index, and `None` is returned.
///
/// ***Panics*** if `index` is out of bounds.
/// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
/// `0..=map.len()` (inclusive) when inserting a new key.
///
/// Computes in **O(n)** time (average).
///
/// See also [`entry`][Self::entry] if you want to insert *or* modify,
/// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
/// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
///
/// // The new key '*' goes exactly at the given index.
/// assert_eq!(map.get_index_of(&'*'), None);
/// assert_eq!(map.shift_insert(10, '*', ()), None);
/// assert_eq!(map.get_index_of(&'*'), Some(10));
///
/// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
/// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
/// assert_eq!(map.get_index_of(&'a'), Some(10));
/// assert_eq!(map.get_index_of(&'*'), Some(9));
///
/// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
/// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
/// assert_eq!(map.get_index_of(&'z'), Some(9));
/// assert_eq!(map.get_index_of(&'*'), Some(10));
///
/// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
/// assert_eq!(map.len(), 27);
/// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
/// assert_eq!(map.get_index_of(&'*'), Some(26));
/// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
/// assert_eq!(map.get_index_of(&'+'), Some(27));
/// assert_eq!(map.len(), 28);
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
/// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
///
/// // This is an invalid index for moving an existing key!
/// map.shift_insert(map.len(), 'a', ());
/// ```
pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
let len = self.len();
match self.entry(key) {
Entry::Occupied(mut entry) => {
assert!(index < len, "index out of bounds");
let old = mem::replace(entry.get_mut(), value);
entry.move_index(index);
Some(old)
}
Entry::Vacant(entry) => {
assert!(index <= len, "index out of bounds");
entry.shift_insert(index, value);
None
}
}
}
/// Get the given key’s corresponding entry in the map for insertion and/or
/// in-place manipulation.
///
/// Computes in **O(1)** time (amortized average).
pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
let hash = self.hash(&key);
self.core.entry(hash, key)
}
/// Creates a splicing iterator that replaces the specified range in the map
/// with the given `replace_with` key-value iterator and yields the removed
/// items. `replace_with` does not need to be the same length as `range`.
///
/// The `range` is removed even if the iterator is not consumed until the
/// end. It is unspecified how many elements are removed from the map if the
/// `Splice` value is leaked.
///
/// The input iterator `replace_with` is only consumed when the `Splice`
/// value is dropped. If a key from the iterator matches an existing entry
/// in the map (outside of `range`), then the value will be updated in that
/// position. Otherwise, the new key-value pair will be inserted in the
/// replaced `range`.
///
/// ***Panics*** if the starting point is greater than the end point or if
/// the end point is greater than the length of the map.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
/// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
/// let removed: Vec<_> = map.splice(2..4, new).collect();
///
/// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
/// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
/// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
/// ```
pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
where
R: RangeBounds<usize>,
I: IntoIterator<Item = (K, V)>,
{
Splice::new(self, range, replace_with.into_iter())
}
/// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
///
/// This is equivalent to calling [`insert`][Self::insert] for each
/// key-value pair from `other` in order, which means that for keys that
/// already exist in `self`, their value is updated in the current position.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// // Note: Key (3) is present in both maps.
/// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
/// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
/// let old_capacity = b.capacity();
///
/// a.append(&mut b);
///
/// assert_eq!(a.len(), 5);
/// assert_eq!(b.len(), 0);
/// assert_eq!(b.capacity(), old_capacity);
///
/// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
/// assert_eq!(a[&3], "d"); // "c" was overwritten.
/// ```
pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
self.extend(other.drain(..));
}
}
impl<K, V, S> IndexMap<K, V, S>
where
S: BuildHasher,
{
pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
let mut h = self.hash_builder.build_hasher();
key.hash(&mut h);
HashValue(h.finish() as usize)
}
/// Return `true` if an equivalent to `key` exists in the map.
///
/// Computes in **O(1)** time (average).
pub fn contains_key<Q>(&self, key: &Q) -> bool
where
Q: ?Sized + Hash + Equivalent<K>,
{
self.get_index_of(key).is_some()
}
/// Return a reference to the value stored for `key`, if it is present,
/// else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get<Q>(&self, key: &Q) -> Option<&V>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some(&entry.value)
} else {
None
}
}
/// Return references to the key-value pair stored for `key`,
/// if it is present, else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some((&entry.key, &entry.value))
} else {
None
}
}
/// Return item index, key and value
pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some((i, &entry.key, &entry.value))
} else {
None
}
}
/// Return item index, if it exists in the map
///
/// Computes in **O(1)** time (average).
pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
where
Q: ?Sized + Hash + Equivalent<K>,
{
match self.as_entries() {
[] => None,
[x] => key.equivalent(&x.key).then_some(0),
_ => {
let hash = self.hash(key);
self.core.get_index_of(hash, key)
}
}
}
pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some(&mut entry.value)
} else {
None
}
}
pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some((i, &entry.key, &mut entry.value))
} else {
None
}
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
/// entry's position with the last element, and it is deprecated in favor of calling that
/// explicitly. If you need to preserve the relative order of the keys in the map, use
/// [`.shift_remove(key)`][Self::shift_remove] instead.
#[deprecated(note = "`remove` disrupts the map order -- \
use `swap_remove` or `shift_remove` for explicit behavior.")]
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
where
Q: ?Sized + Hash + Equivalent<K>,
{
self.swap_remove(key)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
/// replacing this entry's position with the last element, and it is deprecated in favor of
/// calling that explicitly. If you need to preserve the relative order of the keys in the map,
/// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
#[deprecated(note = "`remove_entry` disrupts the map order -- \
use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
self.swap_remove_entry(key)
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
where
Q: ?Sized + Hash + Equivalent<K>,
{
self.swap_remove_full(key).map(third)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
match self.swap_remove_full(key) {
Some((_, key, value)) => Some((key, value)),
None => None,
}
}
/// Remove the key-value pair equivalent to `key` and return it and
/// the index it had.
///
/// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
match self.as_entries() {
[x] if key.equivalent(&x.key) => {
let (k, v) = self.core.pop()?;
Some((0, k, v))
}
[_] | [] => None,
_ => {
let hash = self.hash(key);
self.core.swap_remove_full(hash, key)
}
}
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// Like [`Vec::remove`], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
where
Q: ?Sized + Hash + Equivalent<K>,
{
self.shift_remove_full(key).map(third)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// Like [`Vec::remove`], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
match self.shift_remove_full(key) {
Some((_, key, value)) => Some((key, value)),
None => None,
}
}
/// Remove the key-value pair equivalent to `key` and return it and
/// the index it had.
///
/// Like [`Vec::remove`], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
match self.as_entries() {
[x] if key.equivalent(&x.key) => {
let (k, v) = self.core.pop()?;
Some((0, k, v))
}
[_] | [] => None,
_ => {
let hash = self.hash(key);
self.core.shift_remove_full(hash, key)
}
}
}
}
impl<K, V, S> IndexMap<K, V, S> {
/// Remove the last key-value pair
///
/// This preserves the order of the remaining elements.
///
/// Computes in **O(1)** time (average).
#[doc(alias = "pop_last")] // like `BTreeMap`
pub fn pop(&mut self) -> Option<(K, V)> {
self.core.pop()
}
/// Scan through each key-value pair in the map and keep those where the
/// closure `keep` returns `true`.
///
/// The elements are visited in order, and remaining elements keep their
/// order.
///
/// Computes in **O(n)** time (average).
pub fn retain<F>(&mut self, mut keep: F)
where
F: FnMut(&K, &mut V) -> bool,
{
self.core.retain_in_order(move |k, v| keep(k, v));
}
/// Sort the map’s key-value pairs by the default ordering of the keys.
///
/// This is a stable sort -- but equivalent keys should not normally coexist in
/// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
/// because it is generally faster and doesn't allocate auxiliary memory.
///
/// See [`sort_by`](Self::sort_by) for details.
pub fn sort_keys(&mut self)
where
K: Ord,
{
self.with_entries(move |entries| {
entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map’s key-value pairs in place using the comparison
/// function `cmp`.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
///
/// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
/// the length of the map and *c* the capacity. The sort is stable.
pub fn sort_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
self.with_entries(move |entries| {
entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map and return a by-value iterator of
/// the key-value pairs with the result.
///
/// The sort is stable.
pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoIter::new(entries)
}
/// Sort the map's key-value pairs by the default ordering of the keys, but
/// may not preserve the order of equal elements.
///
/// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
pub fn sort_unstable_keys(&mut self)
where
K: Ord,
{
self.with_entries(move |entries| {
entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map's key-value pairs in place using the comparison function `cmp`, but
/// may not preserve the order of equal elements.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
///
/// Computes in **O(n log n + c)** time where *n* is
/// the length of the map and *c* is the capacity. The sort is unstable.
pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
self.with_entries(move |entries| {
entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map and return a by-value iterator of
/// the key-value pairs with the result.
///
/// The sort is unstable.
#[inline]
pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoIter::new(entries)
}
/// Sort the map’s key-value pairs in place using a sort-key extraction function.
///
/// During sorting, the function is called at most once per entry, by using temporary storage
/// to remember the results of its evaluation. The order of calls to the function is
/// unspecified and may change between versions of `indexmap` or the standard library.
///
/// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
/// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
where
T: Ord,
F: FnMut(&K, &V) -> T,
{
self.with_entries(move |entries| {
entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
});
}
/// Search over a sorted map for a key.
///
/// Returns the position where that key is present, or the position where it can be inserted to
/// maintain the sort. See [`slice::binary_search`] for more details.
///
/// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
/// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
where
K: Ord,
{
self.as_slice().binary_search_keys(x)
}
/// Search over a sorted map with a comparator function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
where
F: FnMut(&'a K, &'a V) -> Ordering,
{
self.as_slice().binary_search_by(f)
}
/// Search over a sorted map with an extraction function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
where
F: FnMut(&'a K, &'a V) -> B,
B: Ord,
{
self.as_slice().binary_search_by_key(b, f)
}
/// Returns the index of the partition point of a sorted map according to the given predicate
/// (the index of the first element of the second partition).
///
/// See [`slice::partition_point`] for more details.
///
/// Computes in **O(log(n))** time.
#[must_use]
pub fn partition_point<P>(&self, pred: P) -> usize
where
P: FnMut(&K, &V) -> bool,
{
self.as_slice().partition_point(pred)
}
/// Reverses the order of the map’s key-value pairs in place.
///
/// Computes in **O(n)** time and **O(1)** space.
pub fn reverse(&mut self) {
self.core.reverse()
}
/// Returns a slice of all the key-value pairs in the map.
///
/// Computes in **O(1)** time.
pub fn as_slice(&self) -> &Slice<K, V> {
Slice::from_slice(self.as_entries())
}
/// Returns a mutable slice of all the key-value pairs in the map.
///
/// Computes in **O(1)** time.
pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
Slice::from_mut_slice(self.as_entries_mut())
}
/// Converts into a boxed slice of all the key-value pairs in the map.
///
/// Note that this will drop the inner hash table and any excess capacity.
pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
Slice::from_boxed(self.into_entries().into_boxed_slice())
}
/// Get a key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
self.as_entries().get(index).map(Bucket::refs)
}
/// Get a key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
}
/// Get an entry in the map by index for in-place manipulation.
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
if index >= self.len() {
return None;
}
Some(IndexedEntry::new(&mut self.core, index))
}
/// Returns a slice of key-value pairs in the given range of indices.
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
let entries = self.as_entries();
let range = try_simplify_range(range, entries.len())?;
entries.get(range).map(Slice::from_slice)
}
/// Returns a mutable slice of key-value pairs in the given range of indices.
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
let entries = self.as_entries_mut();
let range = try_simplify_range(range, entries.len())?;
entries.get_mut(range).map(Slice::from_mut_slice)
}
/// Get the first key-value pair
///
/// Computes in **O(1)** time.
#[doc(alias = "first_key_value")] // like `BTreeMap`
pub fn first(&self) -> Option<(&K, &V)> {
self.as_entries().first().map(Bucket::refs)
}
/// Get the first key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time.
pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
self.as_entries_mut().first_mut().map(Bucket::ref_mut)
}
/// Get the first entry in the map for in-place manipulation.
///
/// Computes in **O(1)** time.
pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
self.get_index_entry(0)
}
/// Get the last key-value pair
///
/// Computes in **O(1)** time.
#[doc(alias = "last_key_value")] // like `BTreeMap`
pub fn last(&self) -> Option<(&K, &V)> {
self.as_entries().last().map(Bucket::refs)
}
/// Get the last key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time.
pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
self.as_entries_mut().last_mut().map(Bucket::ref_mut)
}
/// Get the last entry in the map for in-place manipulation.
///
/// Computes in **O(1)** time.
pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
self.get_index_entry(self.len().checked_sub(1)?)
}
/// Remove the key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.core.swap_remove_index(index)
}
/// Remove the key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like [`Vec::remove`], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.core.shift_remove_index(index)
}
/// Moves the position of a key-value pair from one index to another
/// by shifting all other pairs in-between.
///
/// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
/// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
///
/// ***Panics*** if `from` or `to` are out of bounds.
///
/// Computes in **O(n)** time (average).
pub fn move_index(&mut self, from: usize, to: usize) {
self.core.move_index(from, to)
}
/// Swaps the position of two key-value pairs in the map.
///
/// ***Panics*** if `a` or `b` are out of bounds.
///
/// Computes in **O(1)** time (average).
pub fn swap_indices(&mut self, a: usize, b: usize) {
self.core.swap_indices(a, b)
}
}
/// Access [`IndexMap`] values corresponding to a key.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_uppercase());
/// }
/// assert_eq!(map["lorem"], "LOREM");
/// assert_eq!(map["ipsum"], "IPSUM");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// println!("{:?}", map["bar"]); // panics!
/// ```
impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
where
Q: Hash + Equivalent<K>,
S: BuildHasher,
{
type Output = V;
/// Returns a reference to the value corresponding to the supplied `key`.
///
/// ***Panics*** if `key` is not present in the map.
fn index(&self, key: &Q) -> &V {
self.get(key).expect("IndexMap: key not found")
}
}
/// Access [`IndexMap`] values corresponding to a key.
///
/// Mutable indexing allows changing / updating values of key-value
/// pairs that are already present.
///
/// You can **not** insert new pairs with index syntax, use `.insert()`.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_string());
/// }
/// let lorem = &mut map["lorem"];
/// assert_eq!(lorem, "Lorem");
/// lorem.retain(char::is_lowercase);
/// assert_eq!(map["lorem"], "orem");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// map["bar"] = 1; // panics!
/// ```
impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
where
Q: Hash + Equivalent<K>,
S: BuildHasher,
{
/// Returns a mutable reference to the value corresponding to the supplied `key`.
///
/// ***Panics*** if `key` is not present in the map.
fn index_mut(&mut self, key: &Q) -> &mut V {
self.get_mut(key).expect("IndexMap: key not found")
}
}
/// Access [`IndexMap`] values at indexed positions.
///
/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
///
/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_uppercase());
/// }
/// assert_eq!(map[0], "LOREM");
/// assert_eq!(map[1], "IPSUM");
/// map.reverse();
/// assert_eq!(map[0], "AMET");
/// assert_eq!(map[1], "SIT");
/// map.sort_keys();
/// assert_eq!(map[0], "AMET");
/// assert_eq!(map[1], "DOLOR");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// println!("{:?}", map[10]); // panics!
/// ```
impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
type Output = V;
/// Returns a reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index(&self, index: usize) -> &V {
self.get_index(index)
.expect("IndexMap: index out of bounds")
.1
}
}
/// Access [`IndexMap`] values at indexed positions.
///
/// Mutable indexing allows changing / updating indexed values
/// that are already present.
///
/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_string());
/// }
/// let lorem = &mut map[0];
/// assert_eq!(lorem, "Lorem");
/// lorem.retain(char::is_lowercase);
/// assert_eq!(map["lorem"], "orem");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// map[10] = 1; // panics!
/// ```
impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
/// Returns a mutable reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index_mut(&mut self, index: usize) -> &mut V {
self.get_index_mut(index)
.expect("IndexMap: index out of bounds")
.1
}
}
impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher + Default,
{
/// Create an `IndexMap` from the sequence of key-value pairs in the
/// iterable.
///
/// `from_iter` uses the same logic as `extend`. See
/// [`extend`][IndexMap::extend] for more details.
fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
let mut map = Self::with_capacity_and_hasher(low, <_>::default());
map.extend(iter);
map
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
where
K: Hash + Eq,
{
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let map1 = IndexMap::from([(1, 2), (3, 4)]);
/// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
/// assert_eq!(map1, map2);
/// ```
fn from(arr: [(K, V); N]) -> Self {
Self::from_iter(arr)
}
}
impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher,
{
/// Extend the map with all key-value pairs in the iterable.
///
/// This is equivalent to calling [`insert`][IndexMap::insert] for each of
/// them in order, which means that for keys that already existed
/// in the map, their value is updated but it keeps the existing order.
///
/// New keys are inserted in the order they appear in the sequence. If
/// equivalents of a key occur more than once, the last corresponding value
/// prevails.
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
// (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = iterable.into_iter();
let reserve = if self.is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.reserve(reserve);
iter.for_each(move |(k, v)| {
self.insert(k, v);
});
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
where
K: Hash + Eq + Copy,
V: Copy,
S: BuildHasher,
{
/// Extend the map with all key-value pairs in the iterable.
///
/// See the first extend method for more details.
fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
}
}
impl<K, V, S> Default for IndexMap<K, V, S>
where
S: Default,
{
/// Return an empty [`IndexMap`]
fn default() -> Self {
Self::with_capacity_and_hasher(0, S::default())
}
}
impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
where
K: Hash + Eq,
V1: PartialEq<V2>,
S1: BuildHasher,
S2: BuildHasher,
{
fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
if self.len() != other.len() {
return false;
}
self.iter()
.all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
impl<K, V, S> Eq for IndexMap<K, V, S>
where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
{
}