chrono/datetime/
mod.rs

1// This is a part of Chrono.
2// See README.md and LICENSE.txt for details.
3
4//! ISO 8601 date and time with time zone.
5
6#[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
7use alloc::string::String;
8use core::borrow::Borrow;
9use core::cmp::Ordering;
10use core::fmt::Write;
11use core::ops::{Add, AddAssign, Sub, SubAssign};
12use core::time::Duration;
13use core::{fmt, hash, str};
14#[cfg(feature = "std")]
15use std::time::{SystemTime, UNIX_EPOCH};
16
17#[allow(deprecated)]
18use crate::Date;
19#[cfg(all(feature = "unstable-locales", feature = "alloc"))]
20use crate::format::Locale;
21#[cfg(feature = "alloc")]
22use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339};
23use crate::format::{
24    Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse,
25    parse_and_remainder, parse_rfc3339,
26};
27use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
28#[cfg(feature = "clock")]
29use crate::offset::Local;
30use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc};
31use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
32use crate::{expect, try_opt};
33
34#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35use rkyv::{Archive, Deserialize, Serialize};
36
37/// documented at re-export site
38#[cfg(feature = "serde")]
39pub(super) mod serde;
40
41#[cfg(test)]
42mod tests;
43
44/// ISO 8601 combined date and time with time zone.
45///
46/// There are some constructors implemented here (the `from_*` methods), but
47/// the general-purpose constructors are all via the methods on the
48/// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
49#[derive(Clone)]
50#[cfg_attr(
51    any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
52    derive(Archive, Deserialize, Serialize),
53    archive(compare(PartialEq, PartialOrd))
54)]
55#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
56pub struct DateTime<Tz: TimeZone> {
57    datetime: NaiveDateTime,
58    offset: Tz::Offset,
59}
60
61/// The minimum possible `DateTime<Utc>`.
62#[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
63pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
64/// The maximum possible `DateTime<Utc>`.
65#[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
66pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
67
68impl<Tz: TimeZone> DateTime<Tz> {
69    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
70    ///
71    /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
72    /// passing it through FFI.
73    ///
74    /// For regular use you will probably want to use a method such as
75    /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
76    ///
77    /// # Example
78    ///
79    /// ```
80    /// # #[cfg(feature = "clock")] {
81    /// use chrono::{DateTime, Local};
82    ///
83    /// let dt = Local::now();
84    /// // Get components
85    /// let naive_utc = dt.naive_utc();
86    /// let offset = dt.offset().clone();
87    /// // Serialize, pass through FFI... and recreate the `DateTime`:
88    /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
89    /// assert_eq!(dt, dt_new);
90    /// # }
91    /// ```
92    #[inline]
93    #[must_use]
94    pub const fn from_naive_utc_and_offset(
95        datetime: NaiveDateTime,
96        offset: Tz::Offset,
97    ) -> DateTime<Tz> {
98        DateTime { datetime, offset }
99    }
100
101    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
102    #[inline]
103    #[must_use]
104    #[deprecated(
105        since = "0.4.27",
106        note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
107    )]
108    pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
109        DateTime { datetime, offset }
110    }
111
112    /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
113    ///
114    /// # Panics
115    ///
116    /// Panics if the local datetime can't be converted to UTC because it would be out of range.
117    ///
118    /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
119    /// and the offset from UTC pushes it beyond that.
120    #[inline]
121    #[must_use]
122    #[deprecated(
123        since = "0.4.27",
124        note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
125    )]
126    pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
127        let datetime_utc = datetime - offset.fix();
128
129        DateTime { datetime: datetime_utc, offset }
130    }
131
132    /// Retrieves the date component with an associated timezone.
133    ///
134    /// Unless you are immediately planning on turning this into a `DateTime`
135    /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
136    ///
137    /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
138    /// so should be preferred to [`Date`] any time you truly want to operate on dates.
139    ///
140    /// # Panics
141    ///
142    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
143    /// method will panic if the offset from UTC would push the local date outside of the
144    /// representable range of a [`Date`].
145    #[inline]
146    #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
147    #[allow(deprecated)]
148    #[must_use]
149    pub fn date(&self) -> Date<Tz> {
150        Date::from_utc(self.naive_local().date(), self.offset.clone())
151    }
152
153    /// Retrieves the date component.
154    ///
155    /// # Panics
156    ///
157    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
158    /// method will panic if the offset from UTC would push the local date outside of the
159    /// representable range of a [`NaiveDate`].
160    ///
161    /// # Example
162    ///
163    /// ```
164    /// use chrono::prelude::*;
165    ///
166    /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
167    /// let other: DateTime<FixedOffset> =
168    ///     FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169    /// assert_eq!(date.date_naive(), other.date_naive());
170    /// ```
171    #[inline]
172    #[must_use]
173    pub fn date_naive(&self) -> NaiveDate {
174        self.naive_local().date()
175    }
176
177    /// Retrieves the time component.
178    #[inline]
179    #[must_use]
180    pub fn time(&self) -> NaiveTime {
181        self.datetime.time() + self.offset.fix()
182    }
183
184    /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
185    /// (aka "UNIX timestamp").
186    ///
187    /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
188    /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
189    ///
190    /// ```
191    /// use chrono::{DateTime, TimeZone, Utc};
192    ///
193    /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
194    /// assert_eq!(dt.timestamp(), 1431648000);
195    ///
196    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
197    /// ```
198    #[inline]
199    #[must_use]
200    pub const fn timestamp(&self) -> i64 {
201        let gregorian_day = self.datetime.date().num_days_from_ce() as i64;
202        let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64;
203        (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
204    }
205
206    /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207    ///
208    /// # Example
209    ///
210    /// ```
211    /// use chrono::{NaiveDate, Utc};
212    ///
213    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
214    ///     .unwrap()
215    ///     .and_hms_milli_opt(0, 0, 1, 444)
216    ///     .unwrap()
217    ///     .and_local_timezone(Utc)
218    ///     .unwrap();
219    /// assert_eq!(dt.timestamp_millis(), 1_444);
220    ///
221    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
222    ///     .unwrap()
223    ///     .and_hms_milli_opt(1, 46, 40, 555)
224    ///     .unwrap()
225    ///     .and_local_timezone(Utc)
226    ///     .unwrap();
227    /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
228    /// ```
229    #[inline]
230    #[must_use]
231    pub const fn timestamp_millis(&self) -> i64 {
232        let as_ms = self.timestamp() * 1000;
233        as_ms + self.timestamp_subsec_millis() as i64
234    }
235
236    /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
237    ///
238    /// # Example
239    ///
240    /// ```
241    /// use chrono::{NaiveDate, Utc};
242    ///
243    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
244    ///     .unwrap()
245    ///     .and_hms_micro_opt(0, 0, 1, 444)
246    ///     .unwrap()
247    ///     .and_local_timezone(Utc)
248    ///     .unwrap();
249    /// assert_eq!(dt.timestamp_micros(), 1_000_444);
250    ///
251    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
252    ///     .unwrap()
253    ///     .and_hms_micro_opt(1, 46, 40, 555)
254    ///     .unwrap()
255    ///     .and_local_timezone(Utc)
256    ///     .unwrap();
257    /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
258    /// ```
259    #[inline]
260    #[must_use]
261    pub const fn timestamp_micros(&self) -> i64 {
262        let as_us = self.timestamp() * 1_000_000;
263        as_us + self.timestamp_subsec_micros() as i64
264    }
265
266    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
267    ///
268    /// # Panics
269    ///
270    /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
271    /// an out of range `DateTime`.
272    ///
273    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
274    /// and 2262-04-11T23:47:16.854775807.
275    #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
276    #[inline]
277    #[must_use]
278    pub const fn timestamp_nanos(&self) -> i64 {
279        expect(
280            self.timestamp_nanos_opt(),
281            "value can not be represented in a timestamp with nanosecond precision.",
282        )
283    }
284
285    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
286    ///
287    /// # Errors
288    ///
289    /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
290    /// `None` on an out of range `DateTime`.
291    ///
292    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
293    /// and 2262-04-11T23:47:16.854775807.
294    ///
295    /// # Example
296    ///
297    /// ```
298    /// use chrono::{NaiveDate, Utc};
299    ///
300    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
301    ///     .unwrap()
302    ///     .and_hms_nano_opt(0, 0, 1, 444)
303    ///     .unwrap()
304    ///     .and_local_timezone(Utc)
305    ///     .unwrap();
306    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
307    ///
308    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
309    ///     .unwrap()
310    ///     .and_hms_nano_opt(1, 46, 40, 555)
311    ///     .unwrap()
312    ///     .and_local_timezone(Utc)
313    ///     .unwrap();
314    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
315    ///
316    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
317    ///     .unwrap()
318    ///     .and_hms_nano_opt(0, 12, 43, 145_224_192)
319    ///     .unwrap()
320    ///     .and_local_timezone(Utc)
321    ///     .unwrap();
322    /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
323    ///
324    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
325    ///     .unwrap()
326    ///     .and_hms_nano_opt(23, 47, 16, 854_775_807)
327    ///     .unwrap()
328    ///     .and_local_timezone(Utc)
329    ///     .unwrap();
330    /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
331    ///
332    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
333    ///     .unwrap()
334    ///     .and_hms_nano_opt(0, 12, 43, 145_224_191)
335    ///     .unwrap()
336    ///     .and_local_timezone(Utc)
337    ///     .unwrap();
338    /// assert_eq!(dt.timestamp_nanos_opt(), None);
339    ///
340    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
341    ///     .unwrap()
342    ///     .and_hms_nano_opt(23, 47, 16, 854_775_808)
343    ///     .unwrap()
344    ///     .and_local_timezone(Utc)
345    ///     .unwrap();
346    /// assert_eq!(dt.timestamp_nanos_opt(), None);
347    /// ```
348    #[inline]
349    #[must_use]
350    pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
351        let mut timestamp = self.timestamp();
352        let mut subsec_nanos = self.timestamp_subsec_nanos() as i64;
353        // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while
354        // the final value can be represented as an `i64`.
355        // As workaround we converting the negative case to:
356        // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)``
357        //
358        // Also see <https://github.com/chronotope/chrono/issues/1289>.
359        if timestamp < 0 {
360            subsec_nanos -= 1_000_000_000;
361            timestamp += 1;
362        }
363        try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos)
364    }
365
366    /// Returns the number of milliseconds since the last second boundary.
367    ///
368    /// In event of a leap second this may exceed 999.
369    #[inline]
370    #[must_use]
371    pub const fn timestamp_subsec_millis(&self) -> u32 {
372        self.timestamp_subsec_nanos() / 1_000_000
373    }
374
375    /// Returns the number of microseconds since the last second boundary.
376    ///
377    /// In event of a leap second this may exceed 999,999.
378    #[inline]
379    #[must_use]
380    pub const fn timestamp_subsec_micros(&self) -> u32 {
381        self.timestamp_subsec_nanos() / 1_000
382    }
383
384    /// Returns the number of nanoseconds since the last second boundary
385    ///
386    /// In event of a leap second this may exceed 999,999,999.
387    #[inline]
388    #[must_use]
389    pub const fn timestamp_subsec_nanos(&self) -> u32 {
390        self.datetime.time().nanosecond()
391    }
392
393    /// Retrieves an associated offset from UTC.
394    #[inline]
395    #[must_use]
396    pub const fn offset(&self) -> &Tz::Offset {
397        &self.offset
398    }
399
400    /// Retrieves an associated time zone.
401    #[inline]
402    #[must_use]
403    pub fn timezone(&self) -> Tz {
404        TimeZone::from_offset(&self.offset)
405    }
406
407    /// Changes the associated time zone.
408    /// The returned `DateTime` references the same instant of time from the perspective of the
409    /// provided time zone.
410    #[inline]
411    #[must_use]
412    pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
413        tz.from_utc_datetime(&self.datetime)
414    }
415
416    /// Fix the offset from UTC to its current value, dropping the associated timezone information.
417    /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
418    #[inline]
419    #[must_use]
420    pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
421        self.with_timezone(&self.offset().fix())
422    }
423
424    /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
425    /// information.
426    #[inline]
427    #[must_use]
428    pub const fn to_utc(&self) -> DateTime<Utc> {
429        DateTime { datetime: self.datetime, offset: Utc }
430    }
431
432    /// Adds given `TimeDelta` to the current date and time.
433    ///
434    /// # Errors
435    ///
436    /// Returns `None` if the resulting date would be out of range.
437    #[inline]
438    #[must_use]
439    pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
440        let datetime = self.datetime.checked_add_signed(rhs)?;
441        let tz = self.timezone();
442        Some(tz.from_utc_datetime(&datetime))
443    }
444
445    /// Adds given `Months` to the current date and time.
446    ///
447    /// Uses the last day of the month if the day does not exist in the resulting month.
448    ///
449    /// See [`NaiveDate::checked_add_months`] for more details on behavior.
450    ///
451    /// # Errors
452    ///
453    /// Returns `None` if:
454    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455    ///   daylight saving time transition.
456    /// - The resulting UTC datetime would be out of range.
457    /// - The resulting local datetime would be out of range (unless `months` is zero).
458    #[must_use]
459    pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> {
460        // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate
461        // the resulting date, with which we can return `Some` even for an out of range local
462        // datetime.
463        self.overflowing_naive_local()
464            .checked_add_months(months)?
465            .and_local_timezone(Tz::from_offset(&self.offset))
466            .single()
467    }
468
469    /// Subtracts given `TimeDelta` from the current date and time.
470    ///
471    /// # Errors
472    ///
473    /// Returns `None` if the resulting date would be out of range.
474    #[inline]
475    #[must_use]
476    pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
477        let datetime = self.datetime.checked_sub_signed(rhs)?;
478        let tz = self.timezone();
479        Some(tz.from_utc_datetime(&datetime))
480    }
481
482    /// Subtracts given `Months` from the current date and time.
483    ///
484    /// Uses the last day of the month if the day does not exist in the resulting month.
485    ///
486    /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
487    ///
488    /// # Errors
489    ///
490    /// Returns `None` if:
491    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
492    ///   daylight saving time transition.
493    /// - The resulting UTC datetime would be out of range.
494    /// - The resulting local datetime would be out of range (unless `months` is zero).
495    #[must_use]
496    pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> {
497        // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate
498        // the resulting date, with which we can return `Some` even for an out of range local
499        // datetime.
500        self.overflowing_naive_local()
501            .checked_sub_months(months)?
502            .and_local_timezone(Tz::from_offset(&self.offset))
503            .single()
504    }
505
506    /// Add a duration in [`Days`] to the date part of the `DateTime`.
507    ///
508    /// # Errors
509    ///
510    /// Returns `None` if:
511    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
512    ///   daylight saving time transition.
513    /// - The resulting UTC datetime would be out of range.
514    /// - The resulting local datetime would be out of range (unless `days` is zero).
515    #[must_use]
516    pub fn checked_add_days(self, days: Days) -> Option<Self> {
517        if days == Days::new(0) {
518            return Some(self);
519        }
520        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
521        // does not validate the resulting date. This allows us to return `Some` even for an out of
522        // range local datetime when adding `Days(0)`.
523        self.overflowing_naive_local()
524            .checked_add_days(days)
525            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
526            .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC)
527    }
528
529    /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
530    ///
531    /// # Errors
532    ///
533    /// Returns `None` if:
534    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
535    ///   daylight saving time transition.
536    /// - The resulting UTC datetime would be out of range.
537    /// - The resulting local datetime would be out of range (unless `days` is zero).
538    #[must_use]
539    pub fn checked_sub_days(self, days: Days) -> Option<Self> {
540        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
541        // does not validate the resulting date. This allows us to return `Some` even for an out of
542        // range local datetime when adding `Days(0)`.
543        self.overflowing_naive_local()
544            .checked_sub_days(days)
545            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
546            .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC)
547    }
548
549    /// Subtracts another `DateTime` from the current date and time.
550    /// This does not overflow or underflow at all.
551    #[inline]
552    #[must_use]
553    pub fn signed_duration_since<Tz2: TimeZone>(
554        self,
555        rhs: impl Borrow<DateTime<Tz2>>,
556    ) -> TimeDelta {
557        self.datetime.signed_duration_since(rhs.borrow().datetime)
558    }
559
560    /// Returns a view to the naive UTC datetime.
561    #[inline]
562    #[must_use]
563    pub const fn naive_utc(&self) -> NaiveDateTime {
564        self.datetime
565    }
566
567    /// Returns a view to the naive local datetime.
568    ///
569    /// # Panics
570    ///
571    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
572    /// method will panic if the offset from UTC would push the local datetime outside of the
573    /// representable range of a [`NaiveDateTime`].
574    #[inline]
575    #[must_use]
576    pub fn naive_local(&self) -> NaiveDateTime {
577        self.datetime
578            .checked_add_offset(self.offset.fix())
579            .expect("Local time out of range for `NaiveDateTime`")
580    }
581
582    /// Returns the naive local datetime.
583    ///
584    /// This makes use of the buffer space outside of the representable range of values of
585    /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
586    /// outside chrono.
587    #[inline]
588    #[must_use]
589    pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
590        self.datetime.overflowing_add_offset(self.offset.fix())
591    }
592
593    /// Retrieve the elapsed years from now to the given [`DateTime`].
594    ///
595    /// # Errors
596    ///
597    /// Returns `None` if `base > self`.
598    #[must_use]
599    pub fn years_since(&self, base: Self) -> Option<u32> {
600        let mut years = self.year() - base.year();
601        let earlier_time =
602            (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
603
604        years -= match earlier_time {
605            true => 1,
606            false => 0,
607        };
608
609        match years >= 0 {
610            true => Some(years as u32),
611            false => None,
612        }
613    }
614
615    /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
616    ///
617    /// # Panics
618    ///
619    /// Panics if the date can not be represented in this format: the year may not be negative and
620    /// can not have more than 4 digits.
621    #[cfg(feature = "alloc")]
622    #[must_use]
623    pub fn to_rfc2822(&self) -> String {
624        let mut result = String::with_capacity(32);
625        write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
626            .expect("writing rfc2822 datetime to string should never fail");
627        result
628    }
629
630    /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
631    #[cfg(feature = "alloc")]
632    #[must_use]
633    pub fn to_rfc3339(&self) -> String {
634        // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
635        let mut result = String::with_capacity(32);
636        let naive = self.overflowing_naive_local();
637        let offset = self.offset.fix();
638        write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
639            .expect("writing rfc3339 datetime to string should never fail");
640        result
641    }
642
643    /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
644    /// formatted as per `SecondsFormat`.
645    ///
646    /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
647    /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
648    /// [`Fixed::TimezoneOffsetColon`]
649    ///
650    /// # Examples
651    ///
652    /// ```rust
653    /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate};
654    /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26)
655    ///     .unwrap()
656    ///     .and_hms_micro_opt(18, 30, 9, 453_829)
657    ///     .unwrap()
658    ///     .and_utc();
659    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00");
660    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z");
661    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z");
662    ///
663    /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
664    /// let dt = pst
665    ///     .from_local_datetime(
666    ///         &NaiveDate::from_ymd_opt(2018, 1, 26)
667    ///             .unwrap()
668    ///             .and_hms_micro_opt(10, 30, 9, 453_829)
669    ///             .unwrap(),
670    ///     )
671    ///     .unwrap();
672    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00");
673    /// ```
674    #[cfg(feature = "alloc")]
675    #[must_use]
676    pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
677        let mut result = String::with_capacity(38);
678        write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
679            .expect("writing rfc3339 datetime to string should never fail");
680        result
681    }
682
683    /// Set the time to a new fixed time on the existing date.
684    ///
685    /// # Errors
686    ///
687    /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a
688    /// `DateTime`, and `with_time` would push the value in UTC out of range.
689    ///
690    /// # Example
691    ///
692    /// ```
693    /// # #[cfg(feature = "clock")] {
694    /// use chrono::{Local, NaiveTime};
695    ///
696    /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap();
697    /// let today_noon = Local::now().with_time(noon);
698    /// let today_midnight = Local::now().with_time(NaiveTime::MIN);
699    ///
700    /// assert_eq!(today_noon.single().unwrap().time(), noon);
701    /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN);
702    /// # }
703    /// ```
704    #[must_use]
705    pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> {
706        self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time))
707    }
708
709    /// The minimum possible `DateTime<Utc>`.
710    pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
711    /// The maximum possible `DateTime<Utc>`.
712    pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
713}
714
715impl DateTime<Utc> {
716    /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
717    /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp").
718    ///
719    /// This is a convenience wrapper around [`DateTime::from_timestamp`],
720    /// which is useful in functions like [`Iterator::map`] to avoid a closure.
721    ///
722    /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp).
723    ///
724    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
725    /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`]; if you need to create a
726    /// `DateTime` with more precision, use [`DateTime::from_timestamp_micros`],
727    /// [`DateTime::from_timestamp_millis`], or [`DateTime::from_timestamp_nanos`].
728    ///
729    /// # Errors
730    ///
731    /// Returns `None` on out-of-range number of seconds,
732    /// otherwise returns `Some(DateTime {...})`.
733    ///
734    /// # Examples
735    ///
736    /// Using [`Option::and_then`]:
737    ///
738    /// ```
739    /// # use chrono::DateTime;
740    /// let maybe_timestamp: Option<i64> = Some(1431648000);
741    /// let maybe_dt = maybe_timestamp.and_then(DateTime::from_timestamp_secs);
742    ///
743    /// assert!(maybe_dt.is_some());
744    /// assert_eq!(maybe_dt.unwrap().to_string(), "2015-05-15 00:00:00 UTC");
745    /// ```
746    ///
747    /// Using [`Iterator::map`]:
748    ///
749    /// ```
750    /// # use chrono::{DateTime, Utc};
751    /// let v = vec![i64::MIN, 1_000_000_000, 1_234_567_890, i64::MAX];
752    /// let timestamps: Vec<Option<DateTime<Utc>>> = v
753    ///     .into_iter()
754    ///     .map(DateTime::from_timestamp_secs)
755    ///     .collect();
756    ///
757    /// assert_eq!(vec![
758    ///     None,
759    ///     Some(DateTime::parse_from_rfc3339("2001-09-09 01:46:40Z").unwrap().to_utc()),
760    ///     Some(DateTime::parse_from_rfc3339("2009-02-13 23:31:30Z").unwrap().to_utc()),
761    ///     None,
762    /// ], timestamps);
763    /// ```
764    ///
765    #[inline]
766    #[must_use]
767    pub const fn from_timestamp_secs(secs: i64) -> Option<Self> {
768        Self::from_timestamp(secs, 0)
769    }
770
771    /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
772    /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
773    /// and the number of nanoseconds since the last whole non-leap second.
774    ///
775    /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
776    /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
777    ///
778    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
779    /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
780    ///
781    /// The nanosecond part can exceed 1,000,000,000 in order to represent a
782    /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
783    /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
784    ///
785    /// # Errors
786    ///
787    /// Returns `None` on out-of-range number of seconds and/or
788    /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
789    ///
790    /// # Example
791    ///
792    /// ```
793    /// use chrono::DateTime;
794    ///
795    /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp");
796    ///
797    /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
798    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
799    /// ```
800    #[inline]
801    #[must_use]
802    pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
803        let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
804        let secs = secs.rem_euclid(86_400);
805        if days < i32::MIN as i64 || days > i32::MAX as i64 {
806            return None;
807        }
808        let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
809        let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
810        Some(date.and_time(time).and_utc())
811    }
812
813    /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds
814    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
815    ///
816    /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis).
817    ///
818    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
819    /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
820    ///
821    /// # Errors
822    ///
823    /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
824    ///
825    /// # Example
826    ///
827    /// ```
828    /// use chrono::DateTime;
829    ///
830    /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp");
831    ///
832    /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
833    /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
834    /// ```
835    #[inline]
836    #[must_use]
837    pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
838        let secs = millis.div_euclid(1000);
839        let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000;
840        Self::from_timestamp(secs, nsecs)
841    }
842
843    /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds
844    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
845    ///
846    /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros).
847    ///
848    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
849    /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`].
850    ///
851    /// # Errors
852    ///
853    /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime`
854    /// (more than ca. 262,000 years away from common era)
855    ///
856    /// # Example
857    ///
858    /// ```
859    /// use chrono::DateTime;
860    ///
861    /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC
862    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
863    /// assert!(dt.is_some());
864    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
865    ///
866    /// // Negative timestamps (before the UNIX epoch) are supported as well.
867    /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC
868    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
869    /// assert!(dt.is_some());
870    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
871    /// ```
872    #[inline]
873    #[must_use]
874    pub const fn from_timestamp_micros(micros: i64) -> Option<Self> {
875        let secs = micros.div_euclid(1_000_000);
876        let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000;
877        Self::from_timestamp(secs, nsecs)
878    }
879
880    /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds
881    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
882    ///
883    /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos).
884    ///
885    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
886    /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`].
887    ///
888    /// The UNIX epoch starts on midnight, January 1, 1970, UTC.
889    ///
890    /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can
891    /// be represented as a `DateTime` this method never fails.
892    ///
893    /// # Example
894    ///
895    /// ```
896    /// use chrono::DateTime;
897    ///
898    /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC
899    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
900    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
901    ///
902    /// // Negative timestamps (before the UNIX epoch) are supported as well.
903    /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC
904    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
905    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
906    /// ```
907    #[inline]
908    #[must_use]
909    pub const fn from_timestamp_nanos(nanos: i64) -> Self {
910        let secs = nanos.div_euclid(1_000_000_000);
911        let nsecs = nanos.rem_euclid(1_000_000_000) as u32;
912        expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range")
913    }
914
915    /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
916    pub const UNIX_EPOCH: Self =
917        expect(NaiveDate::from_ymd_opt(1970, 1, 1), "").and_time(NaiveTime::MIN).and_utc();
918}
919
920impl Default for DateTime<Utc> {
921    fn default() -> Self {
922        Utc.from_utc_datetime(&NaiveDateTime::default())
923    }
924}
925
926#[cfg(feature = "clock")]
927impl Default for DateTime<Local> {
928    fn default() -> Self {
929        Local.from_utc_datetime(&NaiveDateTime::default())
930    }
931}
932
933impl Default for DateTime<FixedOffset> {
934    fn default() -> Self {
935        FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
936    }
937}
938
939/// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
940impl From<DateTime<Utc>> for DateTime<FixedOffset> {
941    /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
942    ///
943    /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
944    /// this will be created with a fixed timezone offset of 0.
945    fn from(src: DateTime<Utc>) -> Self {
946        src.with_timezone(&FixedOffset::east_opt(0).unwrap())
947    }
948}
949
950/// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
951#[cfg(feature = "clock")]
952impl From<DateTime<Utc>> for DateTime<Local> {
953    /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
954    ///
955    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
956    fn from(src: DateTime<Utc>) -> Self {
957        src.with_timezone(&Local)
958    }
959}
960
961/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
962impl From<DateTime<FixedOffset>> for DateTime<Utc> {
963    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
964    ///
965    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
966    /// difference.
967    fn from(src: DateTime<FixedOffset>) -> Self {
968        src.with_timezone(&Utc)
969    }
970}
971
972/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
973#[cfg(feature = "clock")]
974impl From<DateTime<FixedOffset>> for DateTime<Local> {
975    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
976    ///
977    /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
978    /// time.
979    fn from(src: DateTime<FixedOffset>) -> Self {
980        src.with_timezone(&Local)
981    }
982}
983
984/// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
985#[cfg(feature = "clock")]
986impl From<DateTime<Local>> for DateTime<Utc> {
987    /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
988    ///
989    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
990    /// timezones.
991    fn from(src: DateTime<Local>) -> Self {
992        src.with_timezone(&Utc)
993    }
994}
995
996/// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
997#[cfg(feature = "clock")]
998impl From<DateTime<Local>> for DateTime<FixedOffset> {
999    /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
1000    ///
1001    /// Conversion is performed via [`DateTime::with_timezone`].
1002    fn from(src: DateTime<Local>) -> Self {
1003        src.with_timezone(&src.offset().fix())
1004    }
1005}
1006
1007/// Maps the local datetime to other datetime with given conversion function.
1008fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
1009where
1010    F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
1011{
1012    f(dt.overflowing_naive_local())
1013        .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
1014        .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
1015}
1016
1017impl DateTime<FixedOffset> {
1018    /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
1019    ///
1020    /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
1021    /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
1022    ///
1023    /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
1024    /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
1025    /// 2008.
1026    ///
1027    /// # Support for the obsolete date format
1028    ///
1029    /// - A 2-digit year is interpreted to be a year in 1950-2049.
1030    /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
1031    ///   [Appendix A.5]
1032    /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
1033    ///   They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
1034    ///   the meaning is now ambiguous, the standard says they should be considered as `-0000`
1035    ///   unless there is out-of-band information confirming their meaning.
1036    ///   The exception is `Z`, which remains identical to `+0000`.
1037    ///
1038    /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
1039    /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
1040    ///
1041    /// # Example
1042    ///
1043    /// ```
1044    /// # use chrono::{DateTime, FixedOffset, TimeZone};
1045    /// assert_eq!(
1046    ///     DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
1047    ///     FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1048    /// );
1049    /// ```
1050    pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1051        const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
1052        let mut parsed = Parsed::new();
1053        parse(&mut parsed, s, ITEMS.iter())?;
1054        parsed.to_datetime()
1055    }
1056
1057    /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
1058    ///
1059    /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
1060    /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
1061    /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
1062    /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
1063    /// encountered variety of RFC 3339 formats.
1064    ///
1065    /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
1066    /// values in a wide range of formats, only some of which represent actual date-and-time
1067    /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
1068    /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
1069    /// values (or the other way around).
1070    pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1071        let mut parsed = Parsed::new();
1072        let (s, _) = parse_rfc3339(&mut parsed, s)?;
1073        if !s.is_empty() {
1074            return Err(TOO_LONG);
1075        }
1076        parsed.to_datetime()
1077    }
1078
1079    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
1080    ///
1081    /// Note that this method *requires a timezone* in the input string. See
1082    /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
1083    /// for a version that does not require a timezone in the to-be-parsed str. The returned
1084    /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
1085    ///
1086    /// See the [`format::strftime` module](crate::format::strftime) for supported format
1087    /// sequences.
1088    ///
1089    /// # Example
1090    ///
1091    /// ```rust
1092    /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone};
1093    ///
1094    /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
1095    /// assert_eq!(
1096    ///     dt,
1097    ///     Ok(FixedOffset::east_opt(0)
1098    ///         .unwrap()
1099    ///         .from_local_datetime(
1100    ///             &NaiveDate::from_ymd_opt(1983, 4, 13)
1101    ///                 .unwrap()
1102    ///                 .and_hms_milli_opt(12, 9, 14, 274)
1103    ///                 .unwrap()
1104    ///         )
1105    ///         .unwrap())
1106    /// );
1107    /// ```
1108    pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
1109        let mut parsed = Parsed::new();
1110        parse(&mut parsed, s, StrftimeItems::new(fmt))?;
1111        parsed.to_datetime()
1112    }
1113
1114    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
1115    /// slice with the remaining portion of the string.
1116    ///
1117    /// Note that this method *requires a timezone* in the input string. See
1118    /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
1119    /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
1120    /// reflecting the parsed timezone.
1121    ///
1122    /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
1123    /// sequences.
1124    ///
1125    /// Similar to [`parse_from_str`](#method.parse_from_str).
1126    ///
1127    /// # Example
1128    ///
1129    /// ```rust
1130    /// # use chrono::{DateTime, FixedOffset, TimeZone};
1131    /// let (datetime, remainder) = DateTime::parse_and_remainder(
1132    ///     "2015-02-18 23:16:09 +0200 trailing text",
1133    ///     "%Y-%m-%d %H:%M:%S %z",
1134    /// )
1135    /// .unwrap();
1136    /// assert_eq!(
1137    ///     datetime,
1138    ///     FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1139    /// );
1140    /// assert_eq!(remainder, " trailing text");
1141    /// ```
1142    pub fn parse_and_remainder<'a>(
1143        s: &'a str,
1144        fmt: &str,
1145    ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
1146        let mut parsed = Parsed::new();
1147        let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
1148        parsed.to_datetime().map(|d| (d, remainder))
1149    }
1150}
1151
1152impl<Tz: TimeZone> DateTime<Tz>
1153where
1154    Tz::Offset: fmt::Display,
1155{
1156    /// Formats the combined date and time with the specified formatting items.
1157    #[cfg(feature = "alloc")]
1158    #[inline]
1159    #[must_use]
1160    pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
1161    where
1162        I: Iterator<Item = B> + Clone,
1163        B: Borrow<Item<'a>>,
1164    {
1165        let local = self.overflowing_naive_local();
1166        DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
1167    }
1168
1169    /// Formats the combined date and time per the specified format string.
1170    ///
1171    /// See the [`crate::format::strftime`] module for the supported escape sequences.
1172    ///
1173    /// # Example
1174    /// ```rust
1175    /// use chrono::prelude::*;
1176    ///
1177    /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
1178    /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
1179    /// assert_eq!(formatted, "02/04/2017 12:50");
1180    /// ```
1181    #[cfg(feature = "alloc")]
1182    #[inline]
1183    #[must_use]
1184    pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
1185        self.format_with_items(StrftimeItems::new(fmt))
1186    }
1187
1188    /// Formats the combined date and time with the specified formatting items and locale.
1189    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1190    #[inline]
1191    #[must_use]
1192    pub fn format_localized_with_items<'a, I, B>(
1193        &self,
1194        items: I,
1195        locale: Locale,
1196    ) -> DelayedFormat<I>
1197    where
1198        I: Iterator<Item = B> + Clone,
1199        B: Borrow<Item<'a>>,
1200    {
1201        let local = self.overflowing_naive_local();
1202        DelayedFormat::new_with_offset_and_locale(
1203            Some(local.date()),
1204            Some(local.time()),
1205            &self.offset,
1206            items,
1207            locale,
1208        )
1209    }
1210
1211    /// Formats the combined date and time per the specified format string and
1212    /// locale.
1213    ///
1214    /// See the [`crate::format::strftime`] module on the supported escape
1215    /// sequences.
1216    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1217    #[inline]
1218    #[must_use]
1219    pub fn format_localized<'a>(
1220        &self,
1221        fmt: &'a str,
1222        locale: Locale,
1223    ) -> DelayedFormat<StrftimeItems<'a>> {
1224        self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
1225    }
1226}
1227
1228impl<Tz: TimeZone> Datelike for DateTime<Tz> {
1229    #[inline]
1230    fn year(&self) -> i32 {
1231        self.overflowing_naive_local().year()
1232    }
1233    #[inline]
1234    fn month(&self) -> u32 {
1235        self.overflowing_naive_local().month()
1236    }
1237    #[inline]
1238    fn month0(&self) -> u32 {
1239        self.overflowing_naive_local().month0()
1240    }
1241    #[inline]
1242    fn day(&self) -> u32 {
1243        self.overflowing_naive_local().day()
1244    }
1245    #[inline]
1246    fn day0(&self) -> u32 {
1247        self.overflowing_naive_local().day0()
1248    }
1249    #[inline]
1250    fn ordinal(&self) -> u32 {
1251        self.overflowing_naive_local().ordinal()
1252    }
1253    #[inline]
1254    fn ordinal0(&self) -> u32 {
1255        self.overflowing_naive_local().ordinal0()
1256    }
1257    #[inline]
1258    fn weekday(&self) -> Weekday {
1259        self.overflowing_naive_local().weekday()
1260    }
1261    #[inline]
1262    fn iso_week(&self) -> IsoWeek {
1263        self.overflowing_naive_local().iso_week()
1264    }
1265
1266    #[inline]
1267    /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1268    ///
1269    /// See also the [`NaiveDate::with_year`] method.
1270    ///
1271    /// # Errors
1272    ///
1273    /// Returns `None` if:
1274    /// - The resulting date does not exist (February 29 in a non-leap year).
1275    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1276    ///   daylight saving time transition.
1277    /// - The resulting UTC datetime would be out of range.
1278    /// - The resulting local datetime would be out of range (unless the year remains the same).
1279    fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1280        map_local(self, |dt| match dt.year() == year {
1281            true => Some(dt),
1282            false => dt.with_year(year),
1283        })
1284    }
1285
1286    /// Makes a new `DateTime` with the month number (starting from 1) changed.
1287    ///
1288    /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist.
1289    ///
1290    /// See also the [`NaiveDate::with_month`] method.
1291    ///
1292    /// # Errors
1293    ///
1294    /// Returns `None` if:
1295    /// - The resulting date does not exist (for example `month(4)` when day of the month is 31).
1296    /// - The value for `month` is invalid.
1297    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1298    ///   daylight saving time transition.
1299    #[inline]
1300    fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1301        map_local(self, |datetime| datetime.with_month(month))
1302    }
1303
1304    /// Makes a new `DateTime` with the month number (starting from 0) changed.
1305    ///
1306    /// See also the [`NaiveDate::with_month0`] method.
1307    ///
1308    /// # Errors
1309    ///
1310    /// Returns `None` if:
1311    /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31).
1312    /// - The value for `month0` is invalid.
1313    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1314    ///   daylight saving time transition.
1315    #[inline]
1316    fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1317        map_local(self, |datetime| datetime.with_month0(month0))
1318    }
1319
1320    /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1321    ///
1322    /// See also the [`NaiveDate::with_day`] method.
1323    ///
1324    /// # Errors
1325    ///
1326    /// Returns `None` if:
1327    /// - The resulting date does not exist (for example `day(31)` in April).
1328    /// - The value for `day` is invalid.
1329    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1330    ///   daylight saving time transition.
1331    #[inline]
1332    fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1333        map_local(self, |datetime| datetime.with_day(day))
1334    }
1335
1336    /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1337    ///
1338    /// See also the [`NaiveDate::with_day0`] method.
1339    ///
1340    /// # Errors
1341    ///
1342    /// Returns `None` if:
1343    /// - The resulting date does not exist (for example `day(30)` in April).
1344    /// - The value for `day0` is invalid.
1345    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1346    ///   daylight saving time transition.
1347    #[inline]
1348    fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1349        map_local(self, |datetime| datetime.with_day0(day0))
1350    }
1351
1352    /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1353    ///
1354    /// See also the [`NaiveDate::with_ordinal`] method.
1355    ///
1356    /// # Errors
1357    ///
1358    /// Returns `None` if:
1359    /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year).
1360    /// - The value for `ordinal` is invalid.
1361    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1362    ///   daylight saving time transition.
1363    #[inline]
1364    fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1365        map_local(self, |datetime| datetime.with_ordinal(ordinal))
1366    }
1367
1368    /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1369    ///
1370    /// See also the [`NaiveDate::with_ordinal0`] method.
1371    ///
1372    /// # Errors
1373    ///
1374    /// Returns `None` if:
1375    /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year).
1376    /// - The value for `ordinal0` is invalid.
1377    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1378    ///   daylight saving time transition.
1379    #[inline]
1380    fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1381        map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1382    }
1383}
1384
1385impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1386    #[inline]
1387    fn hour(&self) -> u32 {
1388        self.overflowing_naive_local().hour()
1389    }
1390    #[inline]
1391    fn minute(&self) -> u32 {
1392        self.overflowing_naive_local().minute()
1393    }
1394    #[inline]
1395    fn second(&self) -> u32 {
1396        self.overflowing_naive_local().second()
1397    }
1398    #[inline]
1399    fn nanosecond(&self) -> u32 {
1400        self.overflowing_naive_local().nanosecond()
1401    }
1402
1403    /// Makes a new `DateTime` with the hour number changed.
1404    ///
1405    /// See also the [`NaiveTime::with_hour`] method.
1406    ///
1407    /// # Errors
1408    ///
1409    /// Returns `None` if:
1410    /// - The value for `hour` is invalid.
1411    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1412    ///   daylight saving time transition.
1413    #[inline]
1414    fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1415        map_local(self, |datetime| datetime.with_hour(hour))
1416    }
1417
1418    /// Makes a new `DateTime` with the minute number changed.
1419    ///
1420    /// See also the [`NaiveTime::with_minute`] method.
1421    ///
1422    /// # Errors
1423    ///
1424    /// - The value for `minute` is invalid.
1425    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1426    ///   daylight saving time transition.
1427    #[inline]
1428    fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1429        map_local(self, |datetime| datetime.with_minute(min))
1430    }
1431
1432    /// Makes a new `DateTime` with the second number changed.
1433    ///
1434    /// As with the [`second`](#method.second) method,
1435    /// the input range is restricted to 0 through 59.
1436    ///
1437    /// See also the [`NaiveTime::with_second`] method.
1438    ///
1439    /// # Errors
1440    ///
1441    /// Returns `None` if:
1442    /// - The value for `second` is invalid.
1443    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1444    ///   daylight saving time transition.
1445    #[inline]
1446    fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1447        map_local(self, |datetime| datetime.with_second(sec))
1448    }
1449
1450    /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1451    ///
1452    /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1453    /// As with the [`NaiveDateTime::nanosecond`] method,
1454    /// the input range can exceed 1,000,000,000 for leap seconds.
1455    ///
1456    /// See also the [`NaiveTime::with_nanosecond`] method.
1457    ///
1458    /// # Errors
1459    ///
1460    /// Returns `None` if `nanosecond >= 2,000,000,000`.
1461    #[inline]
1462    fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1463        map_local(self, |datetime| datetime.with_nanosecond(nano))
1464    }
1465}
1466
1467// We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can
1468// be `Copy`. Implement it manually if the two types we do have are `Copy`.
1469impl<Tz: TimeZone> Copy for DateTime<Tz>
1470where
1471    <Tz as TimeZone>::Offset: Copy,
1472    NaiveDateTime: Copy,
1473{
1474}
1475
1476impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
1477    fn eq(&self, other: &DateTime<Tz2>) -> bool {
1478        self.datetime == other.datetime
1479    }
1480}
1481
1482impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1483
1484impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1485    /// Compare two DateTimes based on their true time, ignoring time zones
1486    ///
1487    /// # Example
1488    ///
1489    /// ```
1490    /// use chrono::prelude::*;
1491    ///
1492    /// let earlier = Utc
1493    ///     .with_ymd_and_hms(2015, 5, 15, 2, 0, 0)
1494    ///     .unwrap()
1495    ///     .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1496    /// let later = Utc
1497    ///     .with_ymd_and_hms(2015, 5, 15, 3, 0, 0)
1498    ///     .unwrap()
1499    ///     .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1500    ///
1501    /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1502    /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1503    ///
1504    /// assert!(later > earlier);
1505    /// ```
1506    fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1507        self.datetime.partial_cmp(&other.datetime)
1508    }
1509}
1510
1511impl<Tz: TimeZone> Ord for DateTime<Tz> {
1512    fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1513        self.datetime.cmp(&other.datetime)
1514    }
1515}
1516
1517impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
1518    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1519        self.datetime.hash(state)
1520    }
1521}
1522
1523/// Add `TimeDelta` to `DateTime`.
1524///
1525/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1526/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1527/// the assumption becomes that **there is exactly a single leap second ever**.
1528///
1529/// # Panics
1530///
1531/// Panics if the resulting date would be out of range.
1532/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1533impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1534    type Output = DateTime<Tz>;
1535
1536    #[inline]
1537    fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1538        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1539    }
1540}
1541
1542/// Add `std::time::Duration` to `DateTime`.
1543///
1544/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1545/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1546/// the assumption becomes that **there is exactly a single leap second ever**.
1547///
1548/// # Panics
1549///
1550/// Panics if the resulting date would be out of range.
1551/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1552impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1553    type Output = DateTime<Tz>;
1554
1555    #[inline]
1556    fn add(self, rhs: Duration) -> DateTime<Tz> {
1557        let rhs = TimeDelta::from_std(rhs)
1558            .expect("overflow converting from core::time::Duration to TimeDelta");
1559        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1560    }
1561}
1562
1563/// Add-assign `chrono::Duration` to `DateTime`.
1564///
1565/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1566/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1567/// the assumption becomes that **there is exactly a single leap second ever**.
1568///
1569/// # Panics
1570///
1571/// Panics if the resulting date would be out of range.
1572/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1573impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1574    #[inline]
1575    fn add_assign(&mut self, rhs: TimeDelta) {
1576        let datetime =
1577            self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1578        let tz = self.timezone();
1579        *self = tz.from_utc_datetime(&datetime);
1580    }
1581}
1582
1583/// Add-assign `std::time::Duration` to `DateTime`.
1584///
1585/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1586/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1587/// the assumption becomes that **there is exactly a single leap second ever**.
1588///
1589/// # Panics
1590///
1591/// Panics if the resulting date would be out of range.
1592/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1593impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1594    #[inline]
1595    fn add_assign(&mut self, rhs: Duration) {
1596        let rhs = TimeDelta::from_std(rhs)
1597            .expect("overflow converting from core::time::Duration to TimeDelta");
1598        *self += rhs;
1599    }
1600}
1601
1602/// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1603///
1604/// # Panics
1605///
1606/// Panics if the resulting date would be out of range.
1607impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1608    type Output = DateTime<Tz>;
1609
1610    #[inline]
1611    fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1612        self.datetime =
1613            self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1614        self
1615    }
1616}
1617
1618/// Add `Months` to `DateTime`.
1619///
1620/// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1621/// details.
1622///
1623/// # Panics
1624///
1625/// Panics if:
1626/// - The resulting date would be out of range.
1627/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1628///   daylight saving time transition.
1629///
1630/// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1631impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1632    type Output = DateTime<Tz>;
1633
1634    fn add(self, rhs: Months) -> Self::Output {
1635        self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1636    }
1637}
1638
1639/// Subtract `TimeDelta` from `DateTime`.
1640///
1641/// This is the same as the addition with a negated `TimeDelta`.
1642///
1643/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1644/// second ever**, except when the `DateTime` itself represents a leap second in which case
1645/// the assumption becomes that **there is exactly a single leap second ever**.
1646///
1647/// # Panics
1648///
1649/// Panics if the resulting date would be out of range.
1650/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1651impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1652    type Output = DateTime<Tz>;
1653
1654    #[inline]
1655    fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1656        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1657    }
1658}
1659
1660/// Subtract `std::time::Duration` from `DateTime`.
1661///
1662/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1663/// second ever**, except when the `DateTime` itself represents a leap second in which case
1664/// the assumption becomes that **there is exactly a single leap second ever**.
1665///
1666/// # Panics
1667///
1668/// Panics if the resulting date would be out of range.
1669/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1670impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1671    type Output = DateTime<Tz>;
1672
1673    #[inline]
1674    fn sub(self, rhs: Duration) -> DateTime<Tz> {
1675        let rhs = TimeDelta::from_std(rhs)
1676            .expect("overflow converting from core::time::Duration to TimeDelta");
1677        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1678    }
1679}
1680
1681/// Subtract-assign `TimeDelta` from `DateTime`.
1682///
1683/// This is the same as the addition with a negated `TimeDelta`.
1684///
1685/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1686/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1687/// the assumption becomes that **there is exactly a single leap second ever**.
1688///
1689/// # Panics
1690///
1691/// Panics if the resulting date would be out of range.
1692/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1693impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1694    #[inline]
1695    fn sub_assign(&mut self, rhs: TimeDelta) {
1696        let datetime =
1697            self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1698        let tz = self.timezone();
1699        *self = tz.from_utc_datetime(&datetime)
1700    }
1701}
1702
1703/// Subtract-assign `std::time::Duration` from `DateTime`.
1704///
1705/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1706/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1707/// the assumption becomes that **there is exactly a single leap second ever**.
1708///
1709/// # Panics
1710///
1711/// Panics if the resulting date would be out of range.
1712/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1713impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1714    #[inline]
1715    fn sub_assign(&mut self, rhs: Duration) {
1716        let rhs = TimeDelta::from_std(rhs)
1717            .expect("overflow converting from core::time::Duration to TimeDelta");
1718        *self -= rhs;
1719    }
1720}
1721
1722/// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1723///
1724/// # Panics
1725///
1726/// Panics if the resulting date would be out of range.
1727impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1728    type Output = DateTime<Tz>;
1729
1730    #[inline]
1731    fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1732        self.datetime =
1733            self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1734        self
1735    }
1736}
1737
1738/// Subtract `Months` from `DateTime`.
1739///
1740/// The result will be clamped to valid days in the resulting month, see
1741/// [`DateTime<Tz>::checked_sub_months`] for details.
1742///
1743/// # Panics
1744///
1745/// Panics if:
1746/// - The resulting date would be out of range.
1747/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1748///   daylight saving time transition.
1749///
1750/// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1751impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1752    type Output = DateTime<Tz>;
1753
1754    fn sub(self, rhs: Months) -> Self::Output {
1755        self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1756    }
1757}
1758
1759impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1760    type Output = TimeDelta;
1761
1762    #[inline]
1763    fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1764        self.signed_duration_since(rhs)
1765    }
1766}
1767
1768impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1769    type Output = TimeDelta;
1770
1771    #[inline]
1772    fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1773        self.signed_duration_since(rhs)
1774    }
1775}
1776
1777/// Add `Days` to `NaiveDateTime`.
1778///
1779/// # Panics
1780///
1781/// Panics if:
1782/// - The resulting date would be out of range.
1783/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1784///   daylight saving time transition.
1785///
1786/// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead.
1787impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1788    type Output = DateTime<Tz>;
1789
1790    fn add(self, days: Days) -> Self::Output {
1791        self.checked_add_days(days).expect("`DateTime + Days` out of range")
1792    }
1793}
1794
1795/// Subtract `Days` from `DateTime`.
1796///
1797/// # Panics
1798///
1799/// Panics if:
1800/// - The resulting date would be out of range.
1801/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1802///   daylight saving time transition.
1803///
1804/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1805impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1806    type Output = DateTime<Tz>;
1807
1808    fn sub(self, days: Days) -> Self::Output {
1809        self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1810    }
1811}
1812
1813impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
1814    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1815        self.overflowing_naive_local().fmt(f)?;
1816        self.offset.fmt(f)
1817    }
1818}
1819
1820// `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1821// deriving a trait recursively does not propagate trait defined associated types with their own
1822// constraints:
1823// In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1824// cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1825// See below for further discussion:
1826// * https://github.com/rust-lang/rust/issues/26925
1827// * https://github.com/rkyv/rkyv/issues/333
1828// * https://github.com/dtolnay/syn/issues/370
1829#[cfg(feature = "rkyv-validation")]
1830impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1831where
1832    Tz: Archive,
1833    <Tz as Archive>::Archived: fmt::Debug,
1834    <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1835    <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1836{
1837    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1838        f.debug_struct("ArchivedDateTime")
1839            .field("datetime", &self.datetime)
1840            .field("offset", &self.offset)
1841            .finish()
1842    }
1843}
1844
1845impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1846where
1847    Tz::Offset: fmt::Display,
1848{
1849    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1850        self.overflowing_naive_local().fmt(f)?;
1851        f.write_char(' ')?;
1852        self.offset.fmt(f)
1853    }
1854}
1855
1856/// Accepts a relaxed form of RFC3339.
1857/// A space or a 'T' are accepted as the separator between the date and time
1858/// parts.
1859///
1860/// All of these examples are equivalent:
1861/// ```
1862/// # use chrono::{DateTime, Utc};
1863/// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1864/// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1865/// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1866/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1867/// # Ok::<(), chrono::ParseError>(())
1868/// ```
1869impl str::FromStr for DateTime<Utc> {
1870    type Err = ParseError;
1871
1872    fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1873        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1874    }
1875}
1876
1877/// Accepts a relaxed form of RFC3339.
1878/// A space or a 'T' are accepted as the separator between the date and time
1879/// parts.
1880///
1881/// All of these examples are equivalent:
1882/// ```
1883/// # use chrono::{DateTime, Local};
1884/// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1885/// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1886/// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1887/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1888/// # Ok::<(), chrono::ParseError>(())
1889/// ```
1890#[cfg(feature = "clock")]
1891impl str::FromStr for DateTime<Local> {
1892    type Err = ParseError;
1893
1894    fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1895        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1896    }
1897}
1898
1899#[cfg(feature = "std")]
1900impl From<SystemTime> for DateTime<Utc> {
1901    fn from(t: SystemTime) -> DateTime<Utc> {
1902        let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1903            Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1904            Err(e) => {
1905                // unlikely but should be handled
1906                let dur = e.duration();
1907                let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1908                if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) }
1909            }
1910        };
1911        Utc.timestamp_opt(sec, nsec).unwrap()
1912    }
1913}
1914
1915#[cfg(feature = "clock")]
1916impl From<SystemTime> for DateTime<Local> {
1917    fn from(t: SystemTime) -> DateTime<Local> {
1918        DateTime::<Utc>::from(t).with_timezone(&Local)
1919    }
1920}
1921
1922#[cfg(feature = "std")]
1923impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
1924    fn from(dt: DateTime<Tz>) -> SystemTime {
1925        let sec = dt.timestamp();
1926        let nsec = dt.timestamp_subsec_nanos();
1927        if sec < 0 {
1928            // unlikely but should be handled
1929            UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1930        } else {
1931            UNIX_EPOCH + Duration::new(sec as u64, nsec)
1932        }
1933    }
1934}
1935
1936#[cfg(all(
1937    target_arch = "wasm32",
1938    feature = "wasmbind",
1939    not(any(target_os = "emscripten", target_os = "wasi", target_os = "linux"))
1940))]
1941impl From<js_sys::Date> for DateTime<Utc> {
1942    fn from(date: js_sys::Date) -> DateTime<Utc> {
1943        DateTime::<Utc>::from(&date)
1944    }
1945}
1946
1947#[cfg(all(
1948    target_arch = "wasm32",
1949    feature = "wasmbind",
1950    not(any(target_os = "emscripten", target_os = "wasi", target_os = "linux"))
1951))]
1952impl From<&js_sys::Date> for DateTime<Utc> {
1953    fn from(date: &js_sys::Date) -> DateTime<Utc> {
1954        Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1955    }
1956}
1957
1958#[cfg(all(
1959    target_arch = "wasm32",
1960    feature = "wasmbind",
1961    not(any(target_os = "emscripten", target_os = "wasi", target_os = "linux"))
1962))]
1963impl From<DateTime<Utc>> for js_sys::Date {
1964    /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1965    /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1966    /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
1967    fn from(date: DateTime<Utc>) -> js_sys::Date {
1968        let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1969        js_sys::Date::new(&js_millis)
1970    }
1971}
1972
1973// Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1974// the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1975#[cfg(all(feature = "arbitrary", feature = "std"))]
1976impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1977where
1978    Tz: TimeZone,
1979    <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1980{
1981    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1982        let datetime = NaiveDateTime::arbitrary(u)?;
1983        let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1984        Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1985    }
1986}
1987
1988/// Number of days between January 1, 1970 and December 31, 1 BCE which we define to be day 0.
1989/// 4 full leap year cycles until December 31, 1600     4 * 146097 = 584388
1990/// 1 day until January 1, 1601                                           1
1991/// 369 years until January 1, 1970                      369 * 365 = 134685
1992/// of which floor(369 / 4) are leap years          floor(369 / 4) =     92
1993/// except for 1700, 1800 and 1900                                       -3 +
1994///                                                                  --------
1995///                                                                  719163
1996pub(crate) const UNIX_EPOCH_DAY: i64 = 719_163;